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Recap: Logistic Function

The function

h(t) =
et

et + 1
=

1

1 + e−t

is called the logistic function or sigmoid.

t

h(t)

1

Sigmoid: ’S’-like function.

Some other ’S’-like function: Hyperbolic tangent: tanh(t) = et−e−t

et+e−t .
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Recap: Logistic Regression for Binary Classification

Logistic Regression (LR) Model:

Prθ [y|x] =
1

1 + exp
(
−y · θ>x

)

Through MLE principle, the learning problem of LR is given by

θ̂ = argmin
θ∈Rd

1

n

n∑
i=1

log
(
1 + exp

(
−yi · θ>xi

))

I LR is for classification.

I LR is a linear classifier.
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Recap: Softmax and Multi-class Logistic Regression

I Consider K classes. Assign each class k = 1, . . . ,K a parameter /
weight vector θk.

I Let Θ =
[
θ1, . . . ,θK

]
∈ R(d+1)×K and {(xi, yi)}ni=1 be the training

data.

I Softmax:

PrΘ [yi = k|xi] =
exp(θ>k xi)∑K
j=1 exp(θ

>
j xi)

I Multi-class logistic regression learning problem:

Θ̂ = argmin
Θ∈Rd×K

− 1

n

n∑
i=1

K∑
k=1

1{yi=k} log

(
exp(θ>k xi)∑K
j=1 exp(θ

>
j xi)

)
,
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How to Learn θ̂?

The objective function (using binary logistic regression as an example)

L(θ) := 1

n

n∑
i=1

log
(
1 + exp

(
−yi · θ>xi

))
The learning problem (from MLE principle and how to make Erout small)

θ̂ = argmin
θ∈Rd

L(θ)

I Bad news 7: No closed-form solution.

I Good news X: The objective function L(θ) is convex in θ.

 Convex optimization and gradient-based learning algorithm.
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Convex Optimization

Gradient-based Optimization Algorithms
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What is Convex Optimization?

Consider the optimization problem:

min
θ∈Rd

L(θ)

I The optimization problem is said to be convex optimization if L(θ) is
a convex function.

I Otherwise, it is called nonconvex optimization.
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Definition of Convex Function

Definition: Convex function

A function L : Rd → R is convex if for all θ,w ∈ Rd and any α ∈ [0, 1],

L(αθ + (1− α)w) ≤ αL(θ) + (1− α)L(w)

L(✓)

L(w)↵L(✓) + (1 � ↵)L(w)

I Geometric intuition: Uniform upward curvature.

I Simple examples: L(θ) = θ,L(θ) = θ2,L(θ) = |θ|,L(θ) = ‖θ‖2.
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First-order Characterization of Convexity

Theorem: First order convexity characterization

Suppose L : Rd → R is differentiable. L is convex if and only if for all
θ,w ∈ Rd

L(w) ≥ L(θ) +∇L(θ)>(w − θ).

(✓, L(✓))

L(✓) + rL(✓)>(w � ✓)

L(w)

I This theorem is often used for analysis.
I Implication:

∇L(θ?) = 0 if and only if θ? is global minima.

I This is how we find the optimal parameters for Least squares.
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Second-order Characterization of Convexity

Theorem: Convexity via Hessian

Let L : Rd → R be twice continuously differentiable. Then L is convex if
and only if its Hessian matrix is positive semidefinite (PSD), i.e.,

d>∇2L(θ)d ≥ 0 ∀ d ∈ Rd, ∀ θ ∈ Rd.

I A way to test convexity if the objective function is twice cont.
differentiable.
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Examples: Convex Instances in Machine Learning

We have the following functions are convex:

I Least squares:

L(θ) = ‖Xθ − y‖22.
I Robust linear regression (HW1).

I Logistic regression:

L(θ) = 1

n

n∑
i=1

log
(
1 + exp

(
−yi · θ>xi

))
.

I Multi-class logistic regression:

L(Θ) = − 1

n

n∑
i=1

K∑
k=1

1{yi=k} log

(
exp(θ>k xi)∑K
j=1 exp(θ

>
j xi)

)
.

I SVM learning problem (later).
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The Advantage of Convex Optimization

I No local minimum. Zero gradient means global optimal solution,
corresponding to θ̂.

I Though we usually do not have closed-form solution, but we have
reliable and efficient algorithms to find the global minimum, i.e.,
points provide zero gradient.

I There are a set of fully developed algorithmic tools for convex
optimization.

Algorithms:

I Gradient-based method.

I Subgradient method (HW2).

I . . .
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The ‘Easy’ and ‘Difficult’ Optimization Problems

I Linear v.s. nonlinear?

I Differentiable v.s. nondifferentiable?

Figure: Convex geometry and nonconvex geometry.

Classify whether a problem is hard or easy: Convex (easy) v.s. nonconvex
(hard).

I Convex optimization: Reasonable algorithms can almost always find
the global minimizer, i.e., θ̂.

I Nonconvex optimization: It is very hard to find a global minimizer.
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Algorithms for Learning θ̂

What we have so far?

I Logistic regression does not have a closed-from solution.

I Logistic regression is a convex optimization problem.

I Convex optimization problems are easy to solve.

 Algorithmic tool:

Gradient-based optimization algorithms.
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Convex Optimization

Gradient-based Optimization Algorithms
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Iterative Algorithm

Iterative algorithm

Start with an initial point θ0, an iterative algorithm A will generate a se-
quence of iterates

θk+1 = A(θk)

for k = 0, 1, 2, . . .

I k represents iteration, an indexing number.

I θk represents iterate at k-th iteration.

What form A usually has in practice?

θk+1 = θk + µkdk

I R 3 µk > 0 is stepsize / learning rate.

I dk ∈ Rd is the search direction, typically depends on θk.

I The key is to choose a proper direction dk at each iteration.
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Illustration and Important Elements

Iterative algorithm: θk+1 = θk + µkdk.
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I The new iterate θk+1 is expected to be closer to θ? than θk

Things to determine:

I Initial point θ0 (fine for convex optimization).

I Search direction dk.

I Learning rate µk.

I Stopping criterion.
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Search Direction dk
Goal:

min
θ∈Rd

L(θ).

The least:

dk should point to a direction that decreases the function value.

Propsition: Descent direction

Suppose L is continuously differentiable, if there exists a d such that

∇L(θ)>d < 0

then, there exists a µ̃ > 0 such that

L(θ + µd) < L(θ)

for all µ ∈ (0, µ̃). Thus, d is a descent direction at θ.

I The proposition can be proved by Taylor Theorem.
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Gradient Descent

I This proposition tells us: At k-th iteration, find a dk satisfying

∇L(θk)>dk < 0.

Then, dk must be a descent direction at the current iterate θk.

Thus, one possible choice is

dk = −∇L(θk)

The resultant algorithm

Gradient descent (GD)

θk+1 = θk − µk∇L(θk)
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Gradient Descent: Interpretation

The gradient descent

θk+1 = θk − µk∇L(θk)

can be equivalently written as

θk+1 = argmin
θ∈Rd

L(θk) +∇L(θk)>(θ − θk) +
1

2µk
‖θ − θk‖22

I L(θk) +∇L(θk)>(θ − θk) is linear approximation of L at θk.

I 1
2µk
‖θ − θk‖22 is proximal term related to learning rate µk.

CUHK-Shenzhen • SDS Xiao Li 20 / 27



Gradient Descent: Interpretation

θk+1 = argmin
θ∈Rd

L(θk) +∇L(θk)>(θ − θk) +
1

2µk
‖θ − θk‖22
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I Cannot directly minimize the
linear approximation.

I The linear approximation is
accurate only around θk.

I Thus, we need the proximal
term.

I The proximal term is used to control how far the algorithm goes.
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Gradient Descent: Interpretation

θk+1 = argmin
θ∈Rd

{
lk(θ) := L(θk) +∇L(θk)>(θ − θk) +

1

2µk
‖θ − θk‖22

}

I lk(θ) is a quadratic function in θ

I At each iteration, we have closed-form update, i.e., the gradient
descent algorithm

θk+1 = θk − µk∇L(θk)

Almost universal algorithmic design strategy

Solving the original problem by solving a sequence of simpler subproblems.
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Gradient Descent: Interpretation
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I Iteratively construct lk(θ) to get the next θk+1
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A Useful Algorithm Design Framework

Suppose the task is minθ∈Rd L(θ), we can design an algorithm as

θk+1 = argmin
θ∈Rd

{
qk(θ) +

1

2µk
‖θ − θk‖22

}
µk is learning rate-like quantity.

I When qk(θ) is linear approximation of L =⇒ gradient descent

I When qk(θ) is second-order approximation of L =⇒ Newton’s
method

I When qk(θ) is L itself =⇒ proximal point method

I When qk(θ) is single component linear approximation of L =⇒
stochastic gradient descent (SGD)

I . . .

Many optimization algorithms follow this designing framework.
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.

Convergence Issue
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Convergence of Iterative Algorithm

I To solve minθ∈Rd L(θ), we cannot obtain the solution θ̂ analytically.

I Design an iterative algorithm, start with θ0, it will generate

{θ0,θ1,θ2, . . . ,θk, . . .}.

Convergence analysis of an algorithm concerns:

I Will θk converge to the solution θ̂ ? That is

lim
k→∞

θk
?
= θ̂.

I If yes, what is the speed of this convergence?

CUHK-Shenzhen • SDS Xiao Li 26 / 27



Convergence of GD
I Suppose that L is convex and differentiable and has Lipschitz

continuous gradient with parameter L,

‖∇L(w)−∇L(u)‖2 ≤ L‖w − u‖2, ∀w,u

 Both convexity and Lipschitz gradient are satisfied in LR.

Theorem: Convergence and Convergence rate of GD

Gradient descent with constant learning rate µk = µ = 1/L satisfies

L(θk)− L(θ̂) ≤
L‖θ0 − θ̂‖22

2k

I L(θk) converges to L(θ̂) at the rate of O(1/k).
I It does not mean {θk} converges to θ̂ at a certain rate.

I L(θk)− L(θ̂) is called sub-optimality gap.

 Next lecture: More on GD and the starting of overfitting.
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