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Recap: Logistic Function

The function

is called the or

Sigmoid: 'S’-like function.

t —t
e —e

efte=t"

Some other 'S'-like function: Hyperbolic tangent: tanh(t) =
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Recap: Logistic Regression for Binary Classification

Logistic Regression (LR) Model:

1
1+ exp (fy . OT:B)

Pro [ylz] =

Through MLE principle, the learning problem of LR is given by

n

1
0= argmin — Zlog (1 + exp (7% 0z, ))

OcRd

» LR is for classification.

» LR is a linear classifier.
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Recap: Softmax and Multi-class Logistic Regression

» Consider K classes. Assign each class k = 1,..., K a parameter /
weight vector .

> Let © = [61,...,0k] € REU+HDXK and {(z;,y;)}7, be the training
data.

» Softmax:

exp(HkTasi)

Pre [y; = k|| = ———————
ol = Z]K:1 exp(Oijl—)

» Multi-class logistic regression learning problem:

. 0, x;
® = argmin —7221{1/ —y log (chxp(km))7

OCRIXK P j 1€Xp(0 5131)
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How to Learn 5?

The objective function (using binary logistic regression as an example)
1 n
£(0) := - leog (1 + exp (—yi . HT:ci))
i=

The learning problem (from MLE principle and how to make Ergy; small)

6 = argmin L(0)
OcR?

» Bad news X: No closed-form solution.

» Good news v': The objective function £(8) is in 6.

~~ Convex optimization and gradient-based learning algorithm.
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Convex Optimization
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What is Convex Optimization?

Consider the optimization problem:

in £(6
s £

> The optimization problem is said to be if £(0) is
a

» Otherwise, it is called
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Definition of Convex Function

Definition: Convex function

A function £:R? — R is if for all 8,w € R? and any a € [0, 1],

L(af+ (1 —a)w) < al(0)+ (1 — a)L(w)

» Geometric intuition: Uniform upward curvature.
» Simple examples: £(0) = 0, L£(0) = 6%, L£(0) = |0, L£(8) = ||0]*.
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First-order Characterization of Convexity

Theorem: First order convexity characterization
Suppose £ : R? — R is differentiable. £ is convex if and only if for all
0, w c R?

L(w) > L(6) +VL®O) (w—6).

L£(0) +VLO) (w—0)

(6,£(9))

» This theorem is often used for analysis.
» Implication:

VL(0") = 0 if and only if 8 is global minima.

» This is how we find the optimal parameters for Least squares.
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Second-order Characterization of Convexity

Theorem: Convexity via Hessian

Let £ : R? — R be twice continuously differentiable. Then L is convex if
and only if its Hessian matrix is positive semidefinite (PSD), i.e.,

d'VL(0)d>0 YdeR? VOeR

> A way to test convexity if the objective function is twice cont.
differentiable.
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Examples: Convex Instances in Machine Learning

We have the following functions are convex:

» Least squares:

L£(0) =[1X0 —yl[5.
> Robust linear regression (HW1).

» Logistic regression:

L£(0) = % ilog (1 + exp (—yi . HT.CBZ')) .

=1

» Multi-class logistic regression:

1 n exp(@lwi)
— E E 1¢y. =11 lO

i=1 k=1 j=1CXP

» SVM learning problem (later).
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The Advantage of Convex Optimization

» No local minimum. Zero gradient means global optimal solution,
corresponding to 6.

» Though we usually do not have closed-form solution, but we have
reliable and efficient algorithms to find the global minimum, i.e.,
points provide zero gradient.

» There are a set of fully developed algorithmic tools for convex
optimization.

Algorithms:
» Gradient-based method.
» Subgradient method (HW2).
|
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The ‘Easy’ and ‘Difficult’ Optimization Problems

» Linear v.s. nonlinear?
» Differentiable v.s. nondifferentiable?

Figure: Convex geometry and nonconvex geometry.

Classify whether a problem is hard or easy: Convex (easy) v.s. nonconvex
(hard).

» Convex optimization: Reasonable algorithms can almost always find
the global minimizer, i.e., 6.

» Nonconvex optimization: It is very hard to find a global minimizer.
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Algorithms for Learning 0

What we have so far?
» Logistic regression does not have a closed-from solution.
» Logistic regression is a convex optimization problem.

» Convex optimization problems are easy to solve.

~» Algorithmic tool:

Gradient-based optimization algorithms.
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Gradient-based Optimization Algorithms
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lterative Algorithm

Iterative algorithm

Start with an initial point 6, an iterative algorithm A will generate a se-
quence of iterates

01 = A6r) |
for k=0,1,2,...
» [ represents , an indexing number.
» 0, represents at k-th iteration.

What form A usually has in practice?

01 = O + prdy

> R>pu,>0is .
» d; € R?is the , typically depends on 6.
» The key is to choose a proper direction dj at each iteration.
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lllustration and Important Elements

Iterative algorithm: Oy = 0y + ppdk.

P> The new iterate 01 is expected to be closer to 8* than 6,

Things to determine:
> Initial point Oy (fine for convex optimization).
» Search direction d.
» Learning rate pg.
» Stopping criterion.
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Search Direction d,

Goal:
min £(0).
OcRa

The least:

dj. should point to a direction that decreases the function value.

Propsition: Descent direction

Suppose L is continuously differentiable, if there exists a d such that
VLO) 'd<0
then, there exists a i > 0 such that
L(0 + ud) < L(0)

for all 4 € (0, /). Thus, d is a descent direction at 6.

» The proposition can be proved by Taylor Theorem.
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Gradient Descent

» This proposition tells us: At k-th iteration, find a dj satisfying

VL) dy < 0.

Then, d;, must be a descent direction at the current iterate 8.

Thus, one possible choice is

\ d, = —VL(6)) \

The resultant algorithm
Gradient descent (GD)

‘ i1 =0) — ,ukvﬁ(ek‘) ‘
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Gradient Descent: Interpretation

The gradient descent
Ori1 =0 — 1 VL(O)

can be equivalently written as

. 1
Or1 = argmin L(0)) +VL(O,) (0 —80,) + —10 — 0,2
OeRd 240

> L(0:)+ VL(O)" (0 — 0}) is linear approximation of £ at .

> 5,.-10 — 643 is proximal term related to learning rate py.
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Gradient Descent: Interpretation

. 1
Or1 = argmin L(0)) +VL(O,) (0 —80,) +—10 — 0,2
OeRd 240

» Cannot directly minimize the
linear approximation.

» The linear approximation is
accurate only around 6.

» Thus, we need the proximal
term.

L(0y) + VL(6x)" (0 — 61)
» The proximal term is used to control how far the algorithm goes.
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Gradient Descent: Interpretation

. 1
0r+1 = argmin {lk(O) = L(0:) +VLOL) (6 —6y)+ THO - 9”%}
OcRd Kk

> [,.(6) is a quadratic function in 6

» At each iteration, we have closed-form update, i.e., the gradient
descent algorithm
041 =0, — 1, VL(Oy)

Almost universal algorithmic design strategy

Solving the original problem by solving a sequence of simpler subproblems.
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Gradient Descent: Interpretation

> lteratively construct ;(0) to get the next Oy
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A Useful Algorithm Design Framework

Suppose the task is mingcga £(0), we can design an algorithm as

. 1
0.1 = argmin {Qk(a) + G 6 — ekg}
OcRd Kk

1y is learning rate-like quantity.

>
>

>
>

When ¢ (0) is linear approximation of £ = gradient descent

When ¢ (0) is second-order approximation of £ = Newton's
method

When ¢, (0) is L itself = proximal point method

When ¢ (0) is single component linear approximation of £ =—>
stochastic gradient descent (SGD)

> ..

Many optimization algorithms follow this designing framework.
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Convergence Issue
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Convergence of Iterative Algorithm

> To solve mingcge £(0), we cannot obtain the solution 0 analytically.

» Design an iterative algorithm, start with 0y, it will generate

{005017927”'70167"'}'

Convergence analysis of an algorithm concerns:
» Will 8, converge to the solution 8 7 That is
. ? A
lim 8, = 6.
k—o0

> If yes, what is the speed of this convergence?
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Convergence of GD

» Suppose that £ is convex and differentiable and has
with parameter L,

~~ Both convexity and Lipschitz gradient are satisfied in LR.

Theorem: Convergence and Convergence rate of GD

Gradient descent with constant learning rate uy = p = 1/L satisfies

~ _ L||8o — 913
£(0) - (@) < 1%k

> L(60)) converges to 5(5) at the rate of O(1/k).
> It does not mean {6} converges to 8 at a certain rate.

> L(6)) — L(@) is called

~~ Next lecture: More on GD and the starting of overfitting.
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