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Recap: VC Dimension Generalization Result

VC generalization bound

For any δ > 0, with probability at least 1− δ, we have the following gener-
alization bound:

∀f ∈ H Erout(f) ≤ Erin(f) +O

(√
dVC
n

)

I This result is very general to cover all cases, and hence it is a loose
result.

I It still provides meaningful information about learning. For instance,
more training data is always better and larger dVC has a worse
generalization ability.
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Recap: Learning Curve from VC Analysis

Erout

Erin

model complexity

d∗VC
VC dimension, dVC

E
rr
or

I The optimal model is the one that minimizes the combinations of
Erin and generalization error.
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Logistic Regression
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Conditional Probability for Classification

I We are going to classify ‘Approve’ and ‘Reject’.

I Labeling: ‘Approve’ y = +1, ‘Reject’ y = −1.

I Now you have a test data x without labeling

I Suppose now you know

Pr [y = +1|x] = 0.8, Pr [y = −1|x] = 0.2

Which class you will assign x to?
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Optimal Classifier Induced by Conditional Probability

Bayes-optimal classifier

The classifier
y ← argmax

y∈Y
Pr [y|x]

is optimal over all possible classifiers.

I Pr [y|x] is called a-posteriori probability of y.

I Implication: Compute Pr [y|x] for optimal classification.

I How can we know Pr [y|x]?
I Suppose we have training data

{(x1, y1), . . . , (xn, yn)}

I We can learn an estimator Prθ [y|x] for Pr [y|x] based on the training
data.
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Logistic Function / Sigmoid

The function

h(t) =
et

et + 1
=

1

1 + e−t

is called the logistic function or sigmoid.

t

h(t)

1

Sigmoid: ’S’-like function.
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Logistic Function: Probability Interpretation

t

h(t)

1

I h(t) ∈ [0, 1] — can be interpreted as probability.

I Pr [y|x] is also a kind of probability.

Link? Using h(t) to approximate Pr [y|x].
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Logistic Regression Model for Binary Classification

Logistic regression (LR) has the following Prθ [y|x] for modeling Pr [y|x]:

Prθ [y = +1|x] = h(θ>x) =
1

1 + e−θ
>x

Prθ [y = −1|x] = 1− Prθ [y = +1|x] = 1

1 + eθ
>x

Thus,

Prθ [y|x] =
1

1 + exp
(
−y · θ>x

)

I The learning process is to learn a θ̂ such that Prθ̂ [y|x] approximates
the underlying Pr [y|x] well (at least on training data).

I Logistic regression is actually a classification technique.

I Intrinsically, it is tailored for binary classification, y ∈ {+1,−1}.
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Logistic Regression is a Linear Classifier

Suppose we have learned θ

Prθ[y = +1|x] = 1

1 + e−θ
>x

>
1

2
(classify x as class + 1)

This is equivalent to

e−θ
>x < 1

This is further equivalent to
θ>x > 0

Thus

y =

{
+1, θ>x > 0

−1, θ>x < 0
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Logistic Regression is a Linear Classifier

y =

{
+1, θ>x > 0

−1, θ>x < 0

I This reduces to our linear classification model fθ(x) = θ
>x.

I LR and the perceptron are two different methodologies for learning
fθ(x).

I In LR, How to choose fθ(x) from H?
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Logistic Regression

I Recall training data pairs:

{(x1, y1), . . . , (xn, yn)}

I Represent a-posteriori probability for (xi, yi)

Prθ [yi|xi] =
1

1 + exp
(
−yi · θ>xi

)

I Observation: The likelihood of (xi, yi) given parameter θ.

How to learn parameter θ?

Maximum likelihood estimation principle.
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Logistic Regression: The Learning Problem
I The likelihood of all data {(xi, yi)} (i.i.d.):

n∏
i=1

Prθ [yi|xi]

I The log-likelihood of all data {(xi, yi)}:
n∑

i=1

log (Prθ [yi|xi]) = −
n∑

i=1

log
(
1 + exp

(
−yi · θ>xi

))
I Maximum likelihood estimation leads to the LR problem:

θ̂ = argmin
θ∈Rd

1

n

n∑
i=1

log
(
1 + exp

(
−yi · θ>xi

))
︸ ︷︷ ︸

`(fθ(xi),yi)

What we are going to minimize? Training error measured by logistic loss,
sometimes also called cross-entropy loss. Also related to minimizing
in-sample error Erin with 0-1 error measure.
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Revisiting Generalization: How to Make Erout Small

I Generalization theory says:

∀fθ ∈ H Erout(fθ) ≤ Erin(fθ) +O

(√
dVC
n

)
.

I The goal: Make Erout small.

I The generalization error is fixed when H and training data are fixed.

I Make the Erin(fθ) small by choosing a specific fθ ∈ H.

How? Design algorithm for training to pick a θ̂ such that:

min
θ∈Rd

Erin(fθ)← θ̂ = argmin
θ∈Rd

1

n

n∑
i=1

` (fθ(xi), yi).

Learned model: fθ̂ ∈ H, provides small Erout(fθ̂).

 Gives the motivation for formulating the logistic regression problem.
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Logistic Regression vs. Perceptron

I Perceptron: Find any linear classifier that correctly classification +1’s
and −1’s, i.e., sign(θ>x) is correct.

I Logistic Regression: Tend to simultaneously classify +1’s and −1’s
into its right-most and left-most sides, respectively.

I In addition, logistic regression does not assume linearly separable data.

LR is intuitively better compared to perceptron.
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Logistic Regression vs. Least Squares

I Logistic regression: logistic loss

θ̂ = argmin
θ∈Rd

1

n

n∑
i=1

log
(
1 + exp

(
−yi · θ>xi

))
.

I Least squares: squared `2-norm loss

θ̂ = argmin
θ∈Rd

‖Xθ − y‖22.

Optimization

I Least squares: Closed-form solution.

I Logistic regression: No closed-form.

Regression vs. classification

I Least squares: Tailored for Regression.

I Logistic regression: Tailored for classification.

CUHK-Shenzhen • SDS Xiao Li 16 / 22



Recall: Regression v.s. Classification

Regression Classification

I Regression is to fit a continuous quantity, y ∈ R is continuous.

I Classification is to fit a discrete labels, y ∈ {−1,+1} is categorical.
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.

Extension: Multi-class Logistic Regression
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Softmax: Extension of Logistic Function

I The logistic regression developed so far is for binary classification.

How about when number of classes K > 2?

I The key idea is to assign each class k = 1, . . . ,K a parameter /
weight vector θk.

I Let Θ =
[
θ1, . . . ,θK

]
∈ R(d+1)×K and {(xi, yi)}ni=1 be the training

data.

I The model for estimating the a-posteriori of yi is given by

PrΘ [yi = k|xi] =
exp(θ>k xi)∑K
j=1 exp(θ

>
j xi)

also known as softmax. It is clear that Pr [yi = k|Θ,xi] sum to 1
over k.
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Multi-class Logistic Regression

Using the reasoning of MLE, we can formulate the learning problem as

Θ̂ = argmin
Θ∈Rd×K

− 1

n

n∑
i=1

K∑
k=1

1{yi=k} log

(
exp(θ>k xi)∑K
j=1 exp(θ

>
j xi)

)
,

where 1{yi=k} is the indicator function defined as

1{yi=k} =

{
1, yi is k-th class

0, otherwise

I Why MLE leads to such a formulation? (HW2).
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Summary of Logistic Regression

I The most important concept in LR is to use logistic function /
softmax to approximate Pr[y|x], i.e.,

Pr[y|x]← Prθ [y|x] =
1

1 + exp
(
−y · θ>x

) .
I LR is to use the data {(xi, yi)} directly to learn such a model

Prθ [y|x].
I Later, we will study that deep neural networks and language models

are also learning this model Prθ [y|x] but not directly using the data
{(xi, yi)}.  Later lectures on deep learning.
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How to Learn θ̂?

The objective function is (using binary logistic regression as an example):

L(θ) := 1

n

n∑
i=1

log
(
1 + exp

(
−yi · θ>xi

))
The learning problem is formulated as

θ̂ = argmin
θ∈Rd

L(θ)

I Bad news 7: No closed-form solution.

I Good news X: The objective function L(θ) is convex in θ.

 Next lectures: Convex optimization and gradient-based optimization
algorithms.
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