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Recap: Generalization for Finite Hypothesis Space

Theorem: Generalization for finite hypothesis space

Let H be a finite hypothesis space, i.e., |H| < ∞. For any δ > 0, the
following generalization bound holds with probability at least 1− δ

∀f ∈ H Erout(f) ≤ Erin(f) +

√√√√ log
(

2|H|
δ

)
2n

(1)

I More samples (larger n) lead to better generalization.

I The generalization error increase when |H| grows, but only
logarithmically.

I However, it is only for finite hypothesis case, i.e., |H| < +∞. This is
impractical.

CUHK-Shenzhen • SDS Xiao Li 2 / 20



Recap: Dichotomy, Growth Function, and VC Dimension
Dichotomies of H
Given {x1, . . . ,xn}. The dichotomies generated by H on these points are
defined by

H(x1, . . . ,xn) = {(f(x1), . . . , f(xn)) : f ∈ H}.

Growth function

The growth function for the hypothesis set H is defined as:

GH(n) = max
{x1,...,xn}⊆X

∣∣H(x1, . . . ,xn)
∣∣

VC dimension

The VC dimension of a hypothesis space H, denoted by dVC(H) or simply
dVC, is the largest n so that it can be shattered by H, i.e.,

dVC(H) := max{n : GH(n) = 2n}.
If GH(n) = 2n for all n, then dVC(H) =∞.

I VC dimension measures the complexity of H, even when |H| =∞.
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VC Dimension-induced Generation
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Example: Perceptron in Two-Dimension

Suppose X is R2 and H is the two-dimensional perceptron.

What is GH(3) and GH(4)?

GH(3) = 8 and GH(4) = 14.

I One can indeed show that there are no 4 points that the
two-dimensional perceptron can shatter.

I Therefore, dVC = 3 for a 2-dimensional perceptron.
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Example: VC Dimension of General Linear Classifier

For a linear classifier, we can derive its VC dimension in a general sense.

This can be generalized to the following general result:

Theorem

For d-dimensional (binary) linear classifier, we have

dVC = d+ 1.

I Proof is put in the supplementary material.
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Property of VC Dimension of Linear Classifier

I dVC is exactly the number of parameters of a d-dimensional binary
linear classifier (think about perceptron), i.e., θ0, θ1, . . . , θd.

I dVC measures the effective number of parameters, and hence the
complexity of H.

I The more parameter a model has, the more complex H is. This is
reflected by a large dVC.

I In some other models, the effective parameters may be less obvious.
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VC Dimension Generalization Result
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VC Dimension Generalization Result

After introducing all the related notions, we can now introduce the VC
dimension generalization result.

VC generalization bound

For any δ > 0, with probability at least 1− δ, we have the following gener-
alization bound:

∀f ∈ H Erout(f) ≤ Erin(f) +

√
8

n
log

(
4GH(2n)

δ

)
Upon invoking the upper bound on growth function using VC dimension,
we have

∀f ∈ H Erout(f) ≤ Erin(f) +

√
8

n
log

(
4((2n)dVC + 1)

δ

)
I See the supplementary material for a proof sketch.
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VC Generalization versus Previous Ones

I The VC generalization bound has the form

∀f ∈ H Erout(f) ≤ Erin(f) +O

(√
dVC
n

)

where O is used to hide a
√
log n/δ term and some constants.

I Comparing the VC generalization bound to the finite H bound, it is
easy to see that we not only replace |H| with GH, but also change
some constants. This is due to some technical issues. Fortunately, the
overall idea is still maintained, that is, we use a much more
reasonable effective number (GH or dVC) to measure the complexity
of H rather than using |H|.

I Larger n means that Erin will generalize better to Erout. When
n→∞, we have Erin = Erout, which is consistent with our
observation from the law of large numbers.
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Is VC Generalization Bound Meaningful / Useful?

I The VC analysis is a universal result since it applies to all hypothesis
space, learning algorithm, input space, probability distributions, binary
targets (It can be extended to other target functions as well).

I Due to such a generality, the bound is indeed (quite) loose.

Though it is quite loose, it gives us useful guidance when conducting
machine learning.

I It formally establishes the feasibility of learning for infinite H. For H
with finite dVC, once we have enough training samples, learning is
likely to be feasible.

I It tends to be equally loose for different models, enabling us to
compare different models by comparing their dVC. In real applications,
model with smaller dVC tend to generalize better than that with larger
dVC.

I It gives us some rules of thumb, e.g., about the number of training
samples: n ≥ 10× dVC.

 We list several applications / guidance of the VC bound in practice.
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Sample Complexity
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Sample Complexity

Sample complexity: The sample complexity denotes how many training
examples n are needed to achieve a certain generalization performance.

Suppose we want the result to hold with probability at least 1− δ, and
generalization error (error between Erin and Erout) to be less than some
small number ε, we have

n ≥ 8

ε2
log

(
4((2n)dVC + 1)

δ

)
.

Concisely, we need n ≥ O(dVC log(1/δ) logn
ε2 ).
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Example: Estimating the Sample Complexity

Example:
Suppose that we have a learning model with dVC = 3 and would like the
generalization error to be at most 0.1 with confidence 90% (so
ε = 0.1, δ = 0.1). How big a data set do we need?

n ≥ 8

0.12
log

(
4((2n)3 + 1)

0.1

)
.

Solving the above inequality gives n ≈ 22000. �

I This obtained sample complexity is much bigger than the previously
said rule of thumb n ≥ 10× dVC, due to the fact that VC bound is
quite loose.

I Nonetheless, the practical guidance is illustrated. With larger dVC, we
need more samples. This is consistent with practice.
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Penalty for Model Complexity and Learning Curve

CUHK-Shenzhen • SDS Xiao Li 15 / 20



Example: Estimating the Erout

In practice, we are often given S. Hence, n is fixed. The question is what
performance we can expect given n?

Example:
Suppose that n = 10, 000 and we have a 90% confidence requirement
(δ = 0.1). What is the out-of-sample error can we guarantee with this
confidence, given that dVC = 3?

By the generalization bound, we have

Erout(f) ≤ Erin(f) +

√
8

10000
log

(
4((20000)3 + 1)

0.1

)
≈ Erin(f) + 0.16. �
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The Fundamental Trade-off

∀f ∈ H Erout(f) ≤ Erin(f) +O

(√
dVC
n

)

To make Erout small:

On the training side, we need:

more complex hypothesis H (larger dVC)

On the generalization side, we need:

less complex hypothesis H (smaller dVC)
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Learning Curve from VC Analysis

Erout

Erin

model complexity

d∗VC
VC dimension, dVC

E
rr
or

I The optimal model is the one that minimizes the combinations of
Erin and generalization error.

I Occam’s Razor principle: The simplest workable model is the best.
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VC Generalization Result for Regression
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VC Generalization Bound for Linear Regression
I So far our VC generalization bound is established for binary

classification case where y = {−1,+1}.
I By adopting certain generalized notion like pseudo-dimension, we can

apply the similar VC analysis to linear regression model, i.e., y = θ>x
where y is real-valued (continuous). Such a generalization result then
applies to linear regression.

I Similar to binary classification case, a d-dimensional linear regression
model has pseudo-dimension equal to d+ 1.

VC generalization bound for linear regression

∀f ∈ H Erout(f) ≤ Erin(f) +O

(√
dp
n

)

where dp is the pseudo-dimension.

I See the book “Foundations of Machine Learning” Chapter 11.2 for
details.

 Next lectures: Logistic regression and gradient-based optimization
algorithm.
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