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Recap: In-sample Error versus Out-of-sample Error

I In-sample Error: Given a set of training samples {x1, · · · ,xn},

Erin =
1

n

n∑
i=1

e(fθ(xi), g(xi))

I Out-of-sample Error: Suppose data x follows a certain distribution D
in an i.i.d. manner,

Erout = Ex∼D [e(fθ(x), g(x))]

Remarks:

I The In-sample error Erin is also known as the training error.

I The out-of-sample error Erout is more general than the test error.
Fortunately, we can use the test error to approximate Erout very well
when the test dataset is large enough.
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Recap: Concept of Training versus Testing / Generalization
Recall that learning is all about to infer g outside of the seen training
dataset, i.e.,

Make the out-of-sample error small

I But Erout is not computable at all.

Here is a simple decomposition:

Erout = Erout−Erin︸ ︷︷ ︸
generalization error

+ Erin︸︷︷︸
traning error

I We need to simultaneously make generalization error and training
error small, in order to make Erout small.

The goal of generalization is to

explore how out-of-sample error is related to in-sample error, i.e., bound
the generalization error

I The reason to explore this relationship is that Erin is computable,
checkable, and even amenable.
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Recap: The Starting Point

Given training samples S = {x1, . . . ,xn}.

In expectation for any f ∈ H: (we omit θ in fθ for simplicity)

ES∼i.i.d.D [Erin(f)] = Erout(f).

I Law of large numbers: When n→∞, we have in-sample error
estimates the out-of-sample error accurately.

I However, this is true only when n→∞.

 We will derive a non-asymptotic (finite n) result for f ≈ g, which is
analogous to the one derived for ν ≈ µ.
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Finite Hypothesis Space Generalization

VC Dimension
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Additional Assumption: Finite Hypothesis Space

Assumption: Finite hypothesis space

The cardinality |H| < +∞

where | · | denotes the cardinality (number of elements) of a set. Namely,
|H| measures the number of all possible fθ ∈ H.

I It means that the number of possible fθ in H is finite. Is it a practical
assumption?

I We will omit θ in fθ in the sequel to ease notation. Remind yourself
f is almost always parameterized by some parameter θ.
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Generalization for Fixed f : A Lemma

Lemma: High probability bounds for fixed f

Fix any model f : X 7→ {−1, 1} (f ∈ H is fixed). The following inequalities
hold for any t > 0:

Pr
[
Erin(f)− Erout(f) ≥ t

]
≤ e−2nt2 ,

and
Pr
[
Erin(f)− Erout(f) ≤ −t

]
≤ e−2nt2 .

Thus, we have the two side tail probability bound

Pr
[
|Erin(f)− Erout(f)| ≥ t

]
≤ 2e−2nt

2

.

I Non-asymptotic bounds valid for any n.

I Equivalently, Pr
[
|Erin(f)− Erout(f)| ≤ t

]
≥ 1− 2e−2nt

2

, which is a

high probability bound.
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Proof
Recall the Hoeffding’s inequality:

Hoeffding’s inequality for bounded random variables

Suppose Xi are independent random variables with mean µi and bounded
on [ai, bi] for i = 1, · · · , n, then for any t > 0, we have

Pr

[
n∑
i=1

(Xi − µi) ≥ t
]
≤ e−

2t2∑n
i=1

(bi−ai)
2

Note that e(f(xi), g(xi)) equals to either 0 or 1, we have

Pr
[
Erin(f)− Erout(f) ≥ t

]
= Pr

[
1

n

n∑
i=1

(e(f(xi), g(xi))− E

[
1

n

n∑
i=1

e(f(xi), g(xi))

]
≥ t
]

= Pr
[ n∑
i=1

(e(f(xi), g(xi))− E[e(f(xi), g(xi))]) ≥ nt
]

≤ e−2nt2 .
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Generalization for Fixed Model f

Proposition: Generalization for fixed f

Fix a model f : X 7→ {−1, 1}. For any δ > 0, the following generalization
bound holds with probability at least 1− δ

Erout(f) ≤ Erin(f) +

√
log
(
2
δ

)
2n

Proof: Letting δ = 2e−2nt
2

and solving for t yields the desired result.

Are we done?
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What We Need is Uniform Bound for All Possible f ∈ H

H

fi
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Generalization for Finite Hypothesis Space

Theorem: Generalization for finite hypothesis space

Let H be a finite hypothesis space, i.e., |H| < ∞. For any δ > 0, the
following generalization bound holds with probability at least 1− δ

∀f ∈ H Erout(f) ≤ Erin(f) +

√√√√ log
(

2|H|
δ

)
2n

(1)

I The dependence on δ is only logarithmically.

I The generalization error increase when |H| grows, but only
logarithmically.

I More samples (larger n) lead to better generalization (always true in
practice).
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Trade-off

∀f ∈ H Erout(f) ≤ Erin(f) +

√√√√ log
(

2|H|
δ

)
2n

On the training side, we need

more complex hypothesis H (larger |H|)

On the generalization side, we need

less complex hypothesis H (smaller |H|)
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Proof

The proof is done by applying union bound. Let f1, · · · , f|H| be the
elements of H. We have

Pr
[
∃f ∈ H s.t. |Erin(f)− Erout(f)| ≥ t

]
= Pr

[
|Erin(f1)− Erout(f1)| ≥ t, or · · ·

or |Erin(f|H|)− Erout(f|H|)| ≥ t
]

union bound
≤

|H|∑
i=1

Pr
[
|Erin(fi)− Erout(fi)| ≥ t

]
≤ 2|H|e−2nt2

Setting the RHS probability to δ yields the desired result.
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Issue with Finite Hypothesis Space

However, |H| is usually infinite in practice

I Think about the the simplest (one-dimensional) linear model
fθ(x) = θx, θ ∈ R. We have infinitely many choices for θ.

I If we let |H| tends to ∞, we will have a trivial bound: Some finite
thing <∞.

Issue: Union bound can be very coarse.

𝐴!

𝐴"𝐴#

In this case, Pr[A1 or A2 or A3] is much less than
∑3
i=1 Pr[Ai].

Solution: Find a way to measure the complexity of H more smartly.
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Finite Hypothesis Space Generalization

VC Dimension
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Road Map

I Instead of using |H| directly to count the complexity of H, we have to
properly account for the overlaps of different hypotheses.

I In this way, our goal is to replace the number of hypotheses |H| with
an effective number which is finite even when |H| is infinite.

 This quantity will be the so-called VC dimension, which is of
combinatorial nature.

I The VC dimension captures how different the hypotheses in H are,
and hence how much overlap the different hypotheses have.

I Using this new notion, we will show that we can replace |H| in the
obtained generalization bound with VC dimension.

Before that, let us introduce the related notion called dichotomy and
growth function.
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Dichotomy

I If f ∈ H is applied to a finite sample set {x1, . . . ,xn}, we get
n-tuple {f(x1), . . . , f(xn)} of ±1’s.

I Such a n tuple is called a dichotomy since it splits {x1, . . . ,xn} into
two groups: The points for which f is +1 and those for which f is −1.

I Each f ∈ H generates a dichotomy on {x1, . . . ,xn}, but two
different f ’s may generate the same dichotomy.

We can now define the dichotomies of the whole hypothesis space H.

Dichotomies of H
Given {x1, . . . ,xn}, the dichotomies generated by H on these points are
defined by

H(x1, . . . ,xn) = {(f(x1), . . . , f(xn)) : f ∈ H}.
I One can think of the dichotomies H(x1, . . . ,xn) as a set of

hypothesis just like H is, except that the hypotheses are only seen
through the n data points.

I Larger H(x1, . . . ,xn) means that H is more diverse / rich.
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Example of Dichotomies

We have five points. There are four different f ∈ H on the points.
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Growth Function

Growth function is a number, which is defined based on the number of
dichotomies.

Growth function

The growth function for the hypothesis set H is defined as:

GH(n) = max
{x1,...,xn}⊆X

∣∣H(x1, . . . ,xn)
∣∣,

where | · | denotes the cardinality (number of elements) of a set.

Instead of counting the size of H by |H|, the idea of growth function is:
Using H, what is the maximum number of ways we can label a n-points
dataset?
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Properties of Growth Function

I GH(n) counts the most dichotomies that can possibly be generated
on any n points in X .

I To compute GH(n), we consider all possible choice of n points, and
pick the one that gives us the most dichotomies, which is of
combinatorial nature.

I Similar to |H|, GH(n) is a measure of the richness of the hypothesis
set H. The difference is that it is now considered on n points rather
than the entire input space X .

I Since H(x1, . . . ,xn) ⊂ {−1,+1}n (the set of all possible dichotomies
on any n points). Clearly, we have

GH(n) ≤ 2n.

I If H is capable of generating all possible dichotomies on
{x1, . . . ,xn}, then H(x1, . . . ,xn) = {−1,+1}n, i.e., GH(n) = 2n,
and we say that H can shatter the data points {x1, . . . ,xn}.
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Vapnik-Chervonenkis (VC) Dimension
We now introduce a well known notion — Vapnik-Chervonenkis (VC)
dimension.

VC dimension

The VC dimension of a hypothesis space H, denoted by dVC(H) or simply
dVC, is the largest n so that it can be shattered by H, i.e.,

dVC(H) := max{n : GH(n) = 2n}.

If GH(n) = 2n for all n, then dVC(H) =∞.

I By definition, VC dimension indicates the representation power of H.

I dVC + 1 counts the number of data points n that H starts to not
shatter.

Fact:

Bounding Growth Function using VC Dimension

GH(n) ≤ ndVC + 1.

 Next lecture: VC dimension generalization.
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