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Recap: In-sample Error versus Out-of-sample Error

> : Given a set of training samples {x1, - , @, },

n

Bria =+ > elfol.).g(a))

i=1

> : Suppose data x follows a certain distribution D
in an i.i.d. manner,

Erou = Eonp [e(fo(@),9(x))] |

Remarks:
» The In-sample error Ery, is also known as the training error.

» The out-of-sample error Erq,; is more general than the test error.
Fortunately, we can use the test error to approximate Erqy,; very well
when the test dataset is large enough.

CUHK-Shenzhen @ SDS Xiao Li

2/21



Recap: Concept of Training versus Testing / Generalization

Recall that learning is all about to infer g outside of the seen training
dataset, i.e.,

Make the out-of-sample error small

» But Ergy, is not computable at all.

Here is a simple decomposition:

Erout = Erout - Erin + Erin
N— ~~
generalization error traning error

» We need to simultaneously make generalization error and training
error small, in order to make Er,,; small.

The goal of generalization is to

explore how out-of-sample error is related to in-sample error, i.e., bound

the generalization error

» The reason to explore this relationship is that Er;, is computable,
checkable, and even amenable.
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Recap: The Starting Point

Given training samples S = {x1,...,z,}.

In expectation for any f € H: (we omit 0 in fg for simplicity)

’ Es~, ;oD [Erin(f)] = Erout(f)- ‘

» Law of large numbers: When n — oo, we have in-sample error
estimates the out-of-sample error accurately.

» However, this is true only when n — oc.

~» We will derive a non-asymptotic (finite n) result for f ~ g, which is
analogous to the one derived for v = p.
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Finite Hypothesis Space Generalization
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Additional Assumption: Finite Hypothesis Space

Assumption: Finite hypothesis space

The cardinality |H| < +00

where | - | denotes the cardinality (number of elements) of a set. Namely,
|| measures the number of all possible fg € H.

» |t means that the number of possible fg in H is finite. Is it a practical
assumption?

> We will omit @ in fg in the sequel to ease notation. Remind yourself
f is almost always parameterized by some parameter 6.
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Generalization for Fixed f: A Lemma

Lemma: High probability bounds for fixed f

Fix any model f : X — {—1,1} (f € H is fixed). The following inequalities
hold for any t > 0:

2

Pr |:Erin(f) — Eroue(f) > t] < g2t

and ,
Pr | Erin(f) — Brow(f) < —t] < e,

Thus, we have the two side tail probability bound

Pr |:|Erin(f) - Erout(f)| > t:| < 26*2nt2.

» Non-asymptotic bounds valid for any n.

> Equivalently, Pr [|Erin(f) — Erow(f)] < t} > 1 — 227 \which is a
high probability bound.
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Proof

Recall the Hoeffding's inequality:
Hoeffding's inequality for bounded random variables

Suppose X; are independent random variables with mean p; and bounded
,n, then for any ¢t > 0, we have

on [a;,b;] fori=1,-

Note that e(f(x

2¢2

n
Z — i) <e Timi(bi—a)?

Pr | Erin(f) — Erou(f) > ¢]
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Generalization for Fixed Model f

Proposition: Generalization for fixed f

Fix a model f: X — {—1,1}. For any 6 > 0, the following generalization

bound holds with probability at least 1 — 9

Proof: Letting 6 = 2¢2"t* and solving for t yields the desired result.

Are we done?
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What We Need is Uniform Bound for All Possible f € H
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Generalization for Finite Hypothesis Space

Theorem: Generalization for finite hypothesis space

Let H be a finite hypothesis space, i.e., |H| < co. For any § > 0, the
following generalization bound holds with probability at least 1 — ¢

VfeH Erout(f) < Erin(f) +

» The dependence on ¢ is only logarithmically.

» The generalization error increase when || grows, but only
logarithmically.

» More samples (larger n) lead to better generalization (always true in
practice).
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Trade-off

Vf (S H Erout(f) S Erin(f) +

On the training side, we need

more complex hypothesis H (larger |H|)

On the generalization side, we need

less complex hypothesis H (smaller |H|)
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Proof

The proof is done by applying union bound. Let f1,---, fj3 be the
elements of H. We have

Pr [af € H s.t. [Erm(f) — Erou(f)] = t]
= Pr || Erin(f1) = Erow(f1)] = tor--

or | Erin(fi#)) — Etout(fin))| > t}

. ||
umonébound Z Pr {l Erin(fi) _ Erout(fi)‘ > t}

i=1
S 2|H|€_2nt2

Setting the RHS probability to d yields the desired result.
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Issue with Finite Hypothesis Space

However, |#| is usually infinite in practice
» Think about the the simplest (one-dimensional) linear model
fo(x) = 0z, 6 € R. We have infinitely many choices for 6.

> If we let || tends to oo, we will have a trivial bound: Some finite
thing < oo.

Issue: Union bound can be very coarse.

Ay

4z

In this case, Pr[A; or Ay or A3] is much less than Zle Pr[A;].
Solution: Find a way to measure the complexity of H more smartly.
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VC Dimension
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Road Map

> Instead of using |#| directly to count the complexity of H, we have to
properly account for the overlaps of different hypotheses.

» In this way, our goal is to replace the number of hypotheses |H| with
an effective number which is finite even when || is infinite.

~» This quantity will be the so-called , which is of
combinatorial nature.

» The VC dimension captures how different the hypotheses in H are,
and hence how much overlap the different hypotheses have.

> Using this new notion, we will show that we can replace |H| in the
obtained generalization bound with VC dimension.

Before that, let us introduce the related notion called and
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Dichotomy

> If f € H is applied to a finite sample set {x1,...,2,}, we get
n-tuple {f(x1),..., f(xn)} of £1's.
» Such a n tuple is called a since it splits {x1,...,x,} into

two groups: The points for which f is +1 and those for which fis —1.

» Each f € H generates a dichotomy on {xy,...,z,}, but two
different f's may generate the same dichotomy.

We can now define the dichotomies of the whole hypothesis space H.

Dichotomies of H

Given {x1,...,x,}, the dichotomies generated by # on these points are
defined by

H(dfl,...7$n) = {(f(ml)aaf(wn» 1 f € /H}

» One can think of the dichotomies H(x1,...,x,) as a set of
hypothesis just like H is, except that the hypotheses are only seen
through the n data points.

» Larger H(xy,...,x,) means that H is more diverse / rich.
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Example of Dichotomies

We have five points. There are four different f € H on the points.
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Growth Function

Growth function is a number, which is defined based on the number of
dichotomies.

Growth function
The growth function for the hypothesis set # is defined as:

Gu(n) = max cx|H(w1"”’w")|’
where | - | denotes the cardinality (number of elements) of a set.

Instead of counting the size of H by ||, the idea of growth function is:
Using H, what is the maximum number of ways we can label a n-points
dataset?
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Properties of Growth Function

» (4;(n) counts the most dichotomies that can possibly be generated
on any n points in X.
» To compute Gy (n), we consider all possible choice of n points, and

pick the one that gives us the most dichotomies, which is of
combinatorial nature.

» Similar to |H|, Gx(n) is a measure of the richness of the hypothesis
set H. The difference is that it is now considered on n points rather
than the entire input space X.

» Since H(x1,...,2x,) C {—1,4+1}" (the set of all possible dichotomies
on any n points). Clearly, we have

Gu(n) <2m.
» If H is capable of generating all possible dichotomies on

{z1,...,x,}, then H(xq,...,x,) ={-1,+1}" ie., Gu(n) =2",
and we say that H can the data points {z1,...,2,}.
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Vapnik-Chervonenkis (VC) Dimension

We now introduce a well known notion —

VC dimension

The VC dimension of a hypothesis space H, denoted by dyc(#) or simply
dyc, is the largest n so that it can be shattered by H, i.e.,

dyc(H) := max{n : Gy(n) = 2"}.

If G (n) = 2™ for all n, then dyc(H) = .

» By definition, VC dimension indicates the representation power of H.

» dyc + 1 counts the number of data points n that #H starts to not
shatter.

Fact:

Bounding Growth Function using VC Dimension

Gun(n) < nve 41,

~> Next lecture: VC dimension generalization.
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