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Recap: Solution of Least Squares

LS formulation: 1
i - 0 - 2.
mgm n ||X y||2

» The optimal solution 0 satisfies
X'X0=X"y.
> Case |: X € R"*? has full column rank, then
~ -1
0 = (XTX) Xy = X1y
» Case Il: X € R"*¢ does not have full column rank. The typical case

is, n < d. It means overfitting. LS has infinitely many solutions.
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What We Have Learned about Supervised Learning

» Components of supervised learning.
» Linear classification and the perceptron algorithm.
» Linear regression and least squares.

Next:

» Let us take linear classification as example. The perceptron algorithm
is learned based on the training dataset.

» How much it can say about the test dataset?

» The same question applies to linear regression as well.

~+ This question is about (also known as

).
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Feasibility of Learning
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Is Learning Possible?

The question is: Does training say anything about testing? (Think about
the perceptron for linear classification)

>
>

In general, unfortunately, NO.

We can even have training and testing data, in which
training data says nothing (even worse) about testing data.

Train Test
job | salary | approve ? job | salary | approve ?
3 10 -1 3 10 +1
0 0 +1 0 0 -1

The (really) unknown target function g is the object of learning.
Learning is all about to infer g outside of the seen training dataset.

There are extreme cases, e.g., we know g on the training dataset, but
nothing on other unseen (test) data points. Learning in this case is
obviously infeasible.

Know things we have already seen, this is not learning, it is
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When and How?

From the previous example, we know that learning is not feasible if we
» make no assumptions about the connections between the training and
test data points, and

> want to firmly (
data.

) predict something about the test

Fortunately, learning will be possible if we
> make some assumptions that the training and testing data are related
in some way. The most common assumption:

The training and test data are independent and identically distributed

(i.i.d.)

» predict something about the test data in a probabilistic way.

CUHK-Shenzhen @ SDS Xiao Li

6/23



A Bin Sampling Example: i.i.d. and Randomness

» Consider a bin with red and
green marbles.

- Pr[red marble] = p.
- Pr[green marble] = 1 — p.

» The learning task is to learn .
» 1 is unknown to us.

» We pick n marbles randomly
and independently (with
replacement). This means i.i.d.

The fraction of red marbles is v.
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A Bin Sampling Example: i.i.d. and Randomness

Does v say anything about u?

» No. Sample can be mostly while bin is mostly red — just like
the previous adversarial example.

» Yes. By intuition, sample frequency v is likely close to the bin
frequency u, once n is not too small.

It is “Possible versus Probable”.

» We choose the “probable” characterization to describe feasibility of
learning.

» We need several useful probabilistic inequalities to obtain the
“probable” results.

CUHK-Shenzhen @ SDS Xiao Li

8 /23



Several Useful Probabilistic Inequalities
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Random Variable
Suppose X is a random variable, how to quantify the behavior of X7

> Probability density function p(z)

In principle a random variable X can possibly take any value in (—oo, +00)

We can say something like
Pr[X >t
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Concentration Inequality for Sub-Gaussian

Theorem: Sub-Gaussian Concentration

Suppose X is a random variable with mean 1 and parameter
o, then for any ¢t > 0, we have

e
Pr[| X — pu| > t] <2e 2.2

» sub-Gaussian includes standard

‘ 0.4F =
Gaussian and any bounded
random variables. “
_ . i 20.2 8
» Tail probability exponentially
decays with respect to t. 0
| |

» Equivalently,

2
Pr[|X — p| <] >1—2¢ 22
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Hoeffding's Inequality

» Fact: Any bounded random variable on [a, b] are sub-Gaussian
random variable with sub-Gaussian parameter o < b_Ta

» We can have the following for bounded random
variables.

Corollary: Hoeffding's inequality for bounded random variables

Suppose X; are independent random variables with mean p; and bounded
on [a;,b;] for i =1,--- ,n, then for any ¢t > 0, we have

n _ o2
" [Z(Xi — ) >t <e Eia®ized?

i=1
and _

Pr[

E (Xs — i)
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Back to Bin Sampling Example

Example: In the bin sampling example, the sampled red marble follows
Binomial-(n, u). What is lower bound of Pr[|lv — pu| < ¢]?

Suppose that X is the total number of red marbles out of n samples. Each

sample is sub-Gaussian with parameter o < ”’Ta = % as each sample can

either take value 1 (with prob. ) or take value 0 (with prob. 1 — ).

Hence, by Hoeffding's inequality,

Prilv—u| >t =Pr[|X — un| > nt] < 2¢~2nt’
» Let us replace n =500 and t = %0. We have
1 -10
Prilv—pl<—=|>1-2¢"=1.
10

» Thatis, “v learns u" is
> Now, we turn to the general learning setting.
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Setup for General Training versus Testing
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Notations

> {x1,...,x,} C X are samples.

» {y1,...,Yn} C Y are corresponding labels generated by the target
function g.

> S ={x;}7_; C X are training samples.
» Binary case: y; € {—1,+1} and H > fg: X — {—1,+1}.

» Example: Perceptron learning algorithm:

sign(fo(x) = 0" x) — {—1,+1}.

~~ We will focus on binary linear classification. It can be generalized to
real-valued y (i.e., regression) with the same conclusion. However, it is
technical, and they do not add to the insight of our analysis of the binary
case.
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Error Measure
The learning goal (analogous to v ~ p) is
Je=g
How to measure such an approximate equality?
» Point-wise error measure:
e(fo(x),g(x)) is small for all possible data x

» Examples:

squared error: e(fo(),9(x)) = (fo(x) — g())*

binary error: e(fo(x), g(x)) = iy (x)2g(2)]

The squared error measure is mainly used for regression, while the
zero-one measure is tailored for classification.
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In-sample Error versus Out-of-sample Error

> : Given a set of training samples {x1, - , @, },

n

Bria =+ > elfol.).g(a))

i=1

> : Suppose data x follows a certain distribution D
in an i.i.d. manner,

Erou = Eonp [e(fo(@),9(x))] |

Remarks:
» The In-sample error Ery, is also known as the training error.
» The out-of-sample error Erq,; is more general than the test error.

Fortunately, we can use the test error to approximate Erqg,t very well
when the test dataset is large enough.
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Learning g is to Make Erg, Small

Recall that learning is all about to infer g outside of the seen training
dataset, i.e.,

Make the out-of-sample error small

Final exam analogy
» The in-sample error/training error is the sample final.
» The out-of-sample error/test error is the actual final.
» Goal: do well on actual final.

Memorization vs learning
» Do well on training data by memorizing it ( ).
» Learning means you have to do well with new data ( ).

But, Eroyt is even not computable ;-(
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The Concept of Training versus Testing / Generalization
The goal of generalization is to

explore how out-of-sample error is related to in-sample error

The reason to explore this relationship is that Er;, is computable,
checkable, and even amenable.

Recall that the goal of machine learning is to make the out-of-sample error

small.
Expected:

In-sample error is small implies out-of-sample error is small
Then:

It only remains to make the in-sample error small (just choose a very
complex hypothesis H)

However, this intuition is not true in general.
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The Fundamental Trade-off in Learning

Here is a simple decomposition:

Erouye = Erous — Erig + Eri
N— ~~
generalization error traning error

Simple observation is that we have to simultaneously make generalization
error and training error small, in order to make Erq,; small.

On the generalization side, we need:

less complex hypothesis H
On the training side, we need:

more complex hypothesis H

~» We will study the above conclusions later.
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I.i.d. Assumption

We make the following assumption to connect training and test date:

> All data (training + testing) come from the same distribution D

(identically distributed).

» The data are sampled independently.

i.i.d. interpretation

age | gender | salary | citizenship | years in job
applicant 1 (train) | 2.5 1 10 3 1
applicant 2 (train) | 2.8 0 8 6 5
applicant 3 (train) | 1.6 0 0 4 0
applicant 4 (test) | 1.5 1 4 5 3

» Rows 1-4 follow the same same distribution D.

» Rows 1-4 are mutually independent.

i.i.d. is an ideal assumption, but a good approximation of practice.
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The Starting Point

Given training samples § = {x1,...,z,}.

In expectation for fixed f € H: (we omit 0 in fg for simplicity)

[ Eseiian Brin(f)] = Brou(f). |

Proof: Recall that all samples are i.i.d. according to D, we have

]ES""i,i.d.D [Erin(f)] = ES’\’i,i.d.D [:L Z e(f(ml)vg(xz))‘|

= %ZEMD le(f(x),g(z))] (sincei.i.d.)

== Erout (f)
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Interpretation

[ Ese..oBra(f)] = Ero(f). |

» Eriy(f) is an unbiased estimator for Ergu(f).

» Law of large numbers: When n — oo, we have in-sample error
estimates the out-of-sample error accurately.

» However, this is an asymptotic (infinite n) result. In practice, we can
never deal with infinite samples.

Solution: Derive non-asymptotic (finite n) results using concentration
inequalities. ~~Next lecture.

CUHK-Shenzhen @ SDS Xiao Li 23 /23



	Feasibility of Learning
	Several Useful Probabilistic Inequalities
	Setup for General Training versus Testing

