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Recap: Solution of Least Squares

LS formulation:

min
θ

1

n
‖Xθ − y‖22.

I The optimal solution θ̂ satisfies

X>Xθ̂ =X>y.

I Case I: X ∈ Rn×d has full column rank, then

θ̂ =
(
X>X

)−1
X>y =X†y.

I Case II: X ∈ Rn×d does not have full column rank. The typical case
is, n < d. It means overfitting. LS has infinitely many solutions.
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What We Have Learned about Supervised Learning

I Components of supervised learning.

I Linear classification and the perceptron algorithm.

I Linear regression and least squares.

Next:

I Let us take linear classification as example. The perceptron algorithm
is learned based on the training dataset.

I How much it can say about the test dataset?

I The same question applies to linear regression as well.

 This question is about training versus testing (also known as
generalization).
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Feasibility of Learning

Several Useful Probabilistic Inequalities

Setup for General Training versus Testing
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Is Learning Possible?

The question is: Does training say anything about testing? (Think about
the perceptron for linear classification)

I In general, unfortunately, NO.

I We can even have adversarial training and testing data, in which
training data says nothing (even worse) about testing data.

Train
job salary approve ?
3 10 -1
0 0 +1

Test
job salary approve ?
3 10 +1
0 0 -1

I The (really) unknown target function g is the object of learning.
Learning is all about to infer g outside of the seen training dataset.

I There are extreme cases, e.g., we know g on the training dataset, but
nothing on other unseen (test) data points. Learning in this case is
obviously infeasible.

I Know things we have already seen, this is not learning, it is
memorizing.
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When and How?

From the previous example, we know that learning is not feasible if we

I make no assumptions about the connections between the training and
test data points, and

I want to firmly (deterministically) predict something about the test
data.

Fortunately, learning will be possible if we

I make some assumptions that the training and testing data are related
in some way. The most common assumption:

The training and test data are independent and identically distributed
(i.i.d.)

I predict something about the test data in a probabilistic way.
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A Bin Sampling Example: i.i.d. and Randomness

I Consider a bin with red and
green marbles.

- Pr[red marble] = µ.
- Pr[green marble] = 1− µ.

I The learning task is to learn µ.

I µ is unknown to us.

I We pick n marbles randomly
and independently (with
replacement). This means i.i.d.

The fraction of red marbles is ν.
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A Bin Sampling Example: i.i.d. and Randomness

Does ν say anything about µ?

I No. Sample can be mostly green while bin is mostly red — just like
the previous adversarial example.

I Yes. By intuition, sample frequency ν is likely close to the bin
frequency µ, once n is not too small.

It is “Possible versus Probable”.

I We choose the “probable” characterization to describe feasibility of
learning.

I We need several useful probabilistic inequalities to obtain the
“probable” results.
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Random Variable
Suppose X is a random variable, how to quantify the behavior of X?

I Probability density function p(x)

In principle a random variable X can possibly take any value in (−∞,+∞)

We can say something like
Pr[X ≥ t]

−4 −2 0 2 4

0

0.2

0.4

y = x2 − 2

x

p
d

f

CUHK-Shenzhen • SDS Xiao Li 10 / 23



Concentration Inequality for Sub-Gaussian

Theorem: Sub-Gaussian Concentration

Suppose X is a sub-Gaussian random variable with mean µ and parameter
σ, then for any t > 0, we have

Pr[|X − µ| ≥ t] ≤ 2e−
t2

2σ2

I sub-Gaussian includes standard
Gaussian and any bounded
random variables.

I Tail probability exponentially
decays with respect to t.

I Equivalently,

Pr[|X − µ| ≤ t] ≥ 1− 2e−
t2

2σ2
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Hoeffding’s Inequality

I Fact: Any bounded random variable on [a, b] are sub-Gaussian
random variable with sub-Gaussian parameter σ ≤ b−a

2 .

I We can have the following Hoeffding’s inequality for bounded random
variables.

Corollary: Hoeffding’s inequality for bounded random variables

Suppose Xi are independent random variables with mean µi and bounded
on [ai, bi] for i = 1, · · · , n, then for any t > 0, we have

Pr

[
n∑

i=1

(Xi − µi) ≥ t

]
≤ e
− 2t2∑n

i=1
(bi−ai)2

and

Pr

[∣∣∣∣∣
n∑

i=1

(Xi − µi)

∣∣∣∣∣ ≥ t
]
≤ 2e

− 2t2∑n
i=1

(bi−ai)2
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Back to Bin Sampling Example

Example: In the bin sampling example, the sampled red marble follows
Binomial-(n, µ). What is lower bound of Pr [|ν − µ| ≤ t]?

Suppose that X is the total number of red marbles out of n samples. Each
sample is sub-Gaussian with parameter σ ≤ b−a

2 = 1
2 as each sample can

either take value 1 (with prob. µ) or take value 0 (with prob. 1− µ).

Hence, by Hoeffding’s inequality,

Pr [|ν − µ| ≥ t] = Pr [|X − µn| ≥ nt] ≤ 2e−2nt
2

.

I Let us replace n = 500 and t = 1
10 . We have

Pr

[
|ν − µ| ≤ 1

10

]
≥ 1− 2e−10 ≈ 1.

I That is, “ν learns µ” is probably and approximately correct (P.A.C.).

I Now, we turn to the general learning setting.
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Notations

I {x1, . . . ,xn} ⊆ X are samples.

I {y1, . . . , yn} ⊆ Y are corresponding labels generated by the target
function g.

I S = {xi}ni=1 ⊆ X are training samples.

I Binary case: yi ∈ {−1,+1} and H 3 fθ : X → {−1,+1}.
I Example: Perceptron learning algorithm:

sign(fθ(x) = θ
>x)→ {−1,+1}.

 We will focus on binary linear classification. It can be generalized to
real-valued y (i.e., regression) with the same conclusion. However, it is
technical, and they do not add to the insight of our analysis of the binary
case.
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Error Measure

The learning goal (analogous to ν ≈ µ) is

fθ ≈ g

How to measure such an approximate equality?

I Point-wise error measure:

e(fθ(x), g(x)) is small for all possible data x

I Examples:

squared error: e(fθ(x), g(x)) = (fθ(x)− g(x))2

binary error: e(fθ(x), g(x)) = 1[fθ(x) 6=g(x)]

The squared error measure is mainly used for regression, while the
zero-one measure is tailored for classification.

CUHK-Shenzhen • SDS Xiao Li 16 / 23



In-sample Error versus Out-of-sample Error

I In-sample Error: Given a set of training samples {x1, · · · ,xn},

Erin =
1

n

n∑
i=1

e(fθ(xi), g(xi))

I Out-of-sample Error: Suppose data x follows a certain distribution D
in an i.i.d. manner,

Erout = Ex∼D [e(fθ(x), g(x))]

Remarks:

I The In-sample error Erin is also known as the training error.

I The out-of-sample error Erout is more general than the test error.
Fortunately, we can use the test error to approximate Erout very well
when the test dataset is large enough.
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Learning g is to Make Erout Small

Recall that learning is all about to infer g outside of the seen training
dataset, i.e.,

Make the out-of-sample error small

Final exam analogy

I The in-sample error/training error is the sample final.

I The out-of-sample error/test error is the actual final.

I Goal: do well on actual final.

Memorization vs learning

I Do well on training data by memorizing it (overfitting).

I Learning means you have to do well with new data (generalization).

But, Erout is even not computable ;-(
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The Concept of Training versus Testing / Generalization
The goal of generalization is to

explore how out-of-sample error is related to in-sample error

The reason to explore this relationship is that Erin is computable,
checkable, and even amenable.

Recall that the goal of machine learning is to make the out-of-sample error
small.

Expected:

In-sample error is small implies out-of-sample error is small

Then:

It only remains to make the in-sample error small (just choose a very
complex hypothesis H)

However, this intuition is not true in general.
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The Fundamental Trade-off in Learning

Here is a simple decomposition:

Erout = Erout−Erin︸ ︷︷ ︸
generalization error

+ Erin︸︷︷︸
traning error

Simple observation is that we have to simultaneously make generalization
error and training error small, in order to make Erout small.

On the generalization side, we need:

less complex hypothesis H

On the training side, we need:

more complex hypothesis H

 We will study the above conclusions later.
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i.i.d. Assumption

We make the following assumption to connect training and test date:

I All data (training + testing) come from the same distribution D
(identically distributed).

I The data are sampled independently.

i.i.d. interpretation

age gender salary citizenship years in job
applicant 1 (train) 2.5 1 10 3 1
applicant 2 (train) 2.8 0 8 6 5
applicant 3 (train) 1.6 0 0 4 0
applicant 4 (test) 1.5 1 4 5 3

I Rows 1-4 follow the same same distribution D.

I Rows 1-4 are mutually independent.

i.i.d. is an ideal assumption, but a good approximation of practice.
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The Starting Point

Given training samples S = {x1, . . . ,xn}.

In expectation for fixed f ∈ H: (we omit θ in fθ for simplicity)

ES∼i.i.d.D [Erin(f)] = Erout(f).

Proof: Recall that all samples are i.i.d. according to D, we have

ES∼i.i.d.D [Erin(f)] = ES∼i.i.d.D

[
1

n

n∑
i=1

e(f(xi), g(xi))

]

=
1

n

n∑
i=1

Ex∼D [e(f(x), g(x))] (since i.i.d.)

= Erout(f)
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Interpretation

ES∼i.i.d.D [Erin(f)] = Erout(f).

I Erin(f) is an unbiased estimator for Erout(f).

I Law of large numbers: When n→∞, we have in-sample error
estimates the out-of-sample error accurately.

I However, this is an asymptotic (infinite n) result. In practice, we can
never deal with infinite samples.

Solution: Derive non-asymptotic (finite n) results using concentration
inequalities.  Next lecture.
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