

DDA5001 Machine Learning

Large Language Models (Part II)

Xiao Li

School of Data Science
The Chinese University of Hong Kong, Shenzhen

Pre-training

Post-training

Reasoning Models

Pre-training Overview

Overview:

- ▶ Pre-training is to train an LLM **from scratch** by optimizing the pre-training objective on a **large corpus** (i.e., training dataset).
- ▶ This looks like a standard training procedure. However, it contains so many non-trivial engineering steps, huge computing resources, and man power resources due to **truly large-scale** feature.

We quickly go through: data, model architecture, scaling law, training setting for pre-training.

We will take **Llama 3** developed by Meta as example.

Pre-training Dataset

Llama 3's pre-training uses **15T** carefully crafted data from the **internet**.

The processing of data includes:

- ▶ Safety filtering.
- ▶ Text extraction and cleaning: extract high quality text from HTML.
- ▶ De-duplication.
- ▶ Quality filtering.
- ▶ Code and math reasoning data.
- ▶ Multilingual data: 176 languages.

Data mix:

- ▶ 50% general knowledge tokens.
- ▶ 25% mathematical and reasoning tokens.
- ▶ 17% code tokens.
- ▶ 8% multilingual tokens.

Model Architecture

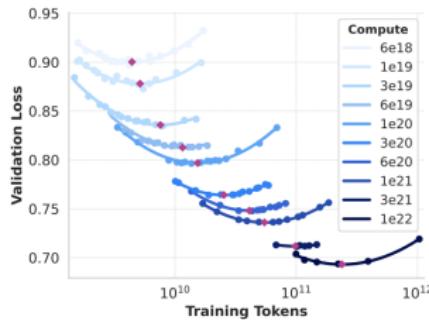
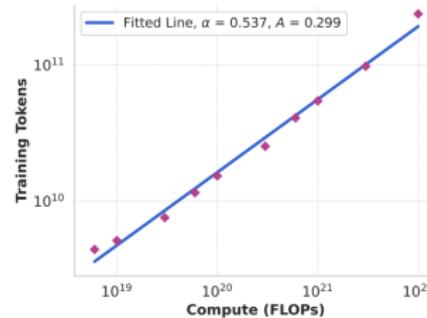
- ▶ Llama 3 uses a standard, dense (decoder) **Transformer** architecture.
- ▶ Use **group query attention** with 8 key-value heads to accelerate inference speed.
- ▶ Vocabulary is of size **128K**, i.e., V in the final layer logistic regression classifier has dimension 128K.
- ▶ Llama 3 has 8B, 70B, 405B models (trainable parameters of the transformer).

Overview of the key hyperparameters of Llama 3:

	8B	70B	405B
Layers	32	80	126
Model Dimension	4,096	8192	16,384
FFN Dimension	6,144	12,288	20,480
Attention Heads	32	64	128
Key/Value Heads	8	8	8
Peak Learning Rate	3×10^{-4}	1.5×10^{-4}	8×10^{-5}
Activation Function		SwiGLU	
Vocabulary Size		128,000	
Positional Embeddings		RoPE ($\theta = 500,000$)	

Scaling Law

- ▶ Scaling law is to predict the training loss of (?) based on training tokens and model size trade-off, given a fixed compute budget (measured by FLOPS).



- ▶ The left figure uses quadratic function to do fitting.
- ▶ The right figure takes the red compute-optimal points in left to fit a power law relationship:

$$N^*(C) = A \cdot C^\alpha.$$

Here, C is compute FLOPS (x-axis) and N^* is the optimal training tokens (y-axis). This also indicates the model size.

Training Recipe

Llama 3-405B is pre-trained using

- ▶ AdamW optimizer.
- ▶ 8×10^{-5} initial lr, and use cosine decay to 8×10^{-7} .
- ▶ It uses an **increasing batch size** to stabilize training process. The batch size for computing the stochastic gradient is starting from 4M, to 8M, and finally to 16M.
- ▶ It also **increases the sequence length n** , starting from 4096 to final 128K sequence length / context window, in order to learn long context understanding.

Pre-training

Post-training

Reasoning Models

SFT: Supervised Finetuning

- ▶ A pre-trained LLM can be regarded as having general knowledge.
- ▶ Sometimes, we need to adapt an LLM to a specific domain.
- ▶ Additionally, pre-trained model is **not** capable of understanding human instructions. We can adapt to follow human instructions.
 - ~~ The need of **supervised finetuning (SFT)**, or sometimes simply called finetuning.
 - ▶ SFT has exactly the same learning problem formulation as in pre-training. The major difference is that it is done on a **much smaller** finetuning dataset, compared to the pre-training dataset.
 - ▶ SFT also has the question-answer pair (x, y) , in which the question x does not count into loss; recall the **loss mask** in your final project part II.
 - ▶ Our final project part II is a SFT task, where the Math500 dataset is a mathematical dataset used to teach pre-trained model to have more mathematical solving ability.

Training Problem Formulation of SFT

Consider the finetuning data pairs $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}$:

- ▶ \mathbf{x} is the question, like a math question.
- ▶ \mathbf{y} is the answer action to the question.

The SFT loss has exactly the same formulation as that of the pre-training loss:

$$\hat{\boldsymbol{\theta}} \leftarrow \operatorname{argmin}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) = \sum_{i \in \mathcal{D}} \sum_{j=1}^m -\log (\mathbb{P}_{\boldsymbol{\theta}}[y_{i,j} | \mathbf{x}_i, \mathbf{y}_{i,1:j-1}]).$$

The difference is that \mathcal{D} is very small and we do not count \mathbf{x} in the loss using a loss mask.

- ▶ Our project part II is a format of post-training with SFT on math data, which can reasonably improve the mathematical performance of a very small model.

Memory Analysis for Finetuning LLMs

To finetune an LLM with M billion parameters using AdamW optimizer and mixed precision training approach, one needs to store:

- ▶ Float16 model: $2M$ GB
- ▶ Float32 model: $4M$ GB
- ▶ Float32 gradient: $4M$ GB
- ▶ Float32 momentum: $4M$ GB
- ▶ Float32 second moment: $4M$ GB
- ▶ Activation values.

In total, one needs at least $18M$ GB GPU RAM, plus additional memory for storing activations.

Examples:

- ▶ For Llama 3-8B, one needs at least 144GB GPU RAM, necessitating $2 \times$ A100-80GB.
- ▶ For Llama 3-70B, $8 \times$ A100-80GB is even not enough...
- ▶ This is why we can only tune a very small Qwen3 model.

PO: Preference Optimization of LLMs

- ▶ Preference optimization (PO) is to teach LLMs to prefer one answer over another, i.e., learning to have a preference.

PO is to fit the following kind of dataset

$$\{(\mathbf{x}, \mathbf{y}_w, \mathbf{y}_l)\},$$

where \mathbf{x} is the prompt, \mathbf{y}_w is the preferred answer over \mathbf{y}_l .

After PO step, we expect

$$\mathbb{P}_{\theta}(\mathbf{y}_w | \mathbf{x}) > \mathbb{P}_{\theta}(\mathbf{y}_l | \mathbf{x}).$$

That is, the finetuned model prefers \mathbf{y}_w over \mathbf{y}_l .

DPO: Direct Preference Optimization

- ▶ One very elegant way to performing PO is the **DPO**.
- ▶ DPO is based on BT model to measure preference.

DPO seeks to solve the following problem

$$\underset{\theta}{\text{minimize}} \left\{ -\log \sigma \left(\beta \log \left(\frac{\mathbb{P}_{\theta}(\mathbf{y}_w | \mathbf{x})}{\mathbb{P}_{ref}(\mathbf{y}_w | \mathbf{x})} \right) - \beta \log \left(\frac{\mathbb{P}_{\theta}(\mathbf{y}_l | \mathbf{x})}{\mathbb{P}_{ref}(\mathbf{y}_l | \mathbf{x})} \right) \right) \right\}.$$

- ▶ \mathbb{P}_{ref} is the SFTed reference model, σ is the sigmoid (logistic) function.

Interpretation: DPO tries to **max** \mathbf{y}_w 's generation probability, while simultaneously **min** \mathbf{y}_l 's generation probability.

- ▶ Though DPO is widely used and has strong performance, it does not do "unlearning" properly. ↵ We still have much to investigate in the future.

Pre-training

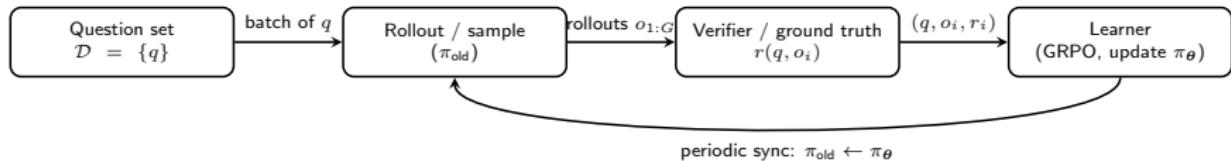
Post-training

Reasoning Models

LLM Reasoning Background

- ▶ Strong reasoning LLMs:
 - ▶ OpenAI o1 family, DeepSeek-R1, etc.
- ▶ Math reasoning is a key testbed:
 - ▶ Math500, AIME24/25, AMC, etc.
- ▶ Two main post-training paradigms:
 - ▶ Reinforcement learning with Verifiable Rewards (RLVR) such as GRPO, using verifiable reward signals.
 - ▶ Supervised finetuning (SFT) on reasoning traces generated by strong reasoning models like R-1.

RLVR and its Self-Training Framework



RLVR (GRPO) is one of such instances:

For prompt q and group of rollouts $\{o_i\}_{i=1}^G \sim \pi_{\text{old}}(\cdot | q)$, maximize

$$\mathcal{J}(\theta) = \mathbb{E} \left[\frac{1}{G} \sum_{i=1}^G \min(\rho_i A_i, \text{clip}(\rho_i, 1-\epsilon, 1+\epsilon) A_i) \right]$$

where,

$$\rho_i = \frac{\pi_{\theta}(o_i | q)}{\pi_{\text{old}}(o_i | q)} \quad (\text{importance}), \quad A_i = \frac{r(q, o_i) - \mu_r}{\sigma_r} \quad (\text{advantage}),$$

$$\mu_r = \frac{1}{G} \sum_{j=1}^G r(q, o_j), \quad \sigma_r = \text{std}(\{r(q, o_j)\}_{j=1}^G),$$

and $r(q, o_i)$ is the **reward** (ground truth answer) of rollout o_i to question q .

Understanding RLVR (GRPO)

- ▶ RLVR (GRPO) uses self-generated data for improving its math ability.
- ▶ The training signal comes from the outside verifier, which gives a reward.

Consider GRPO without clipping. Mathematical intuition:

$$\underset{\theta}{\text{maximize}} \quad (\text{positive } A_i) \pi_{\theta}(o_i \mid q) + (\text{negative } A_j) \pi_{\theta}(o_j \mid q).$$

- ▶ Fit correct answer, while against wrong answer.

Pass@k

- ▶ In reasoning models, we often allow the model to produce **multiple attempts** for the same problem.
- ▶ This is a form related to **test-time scaling**.

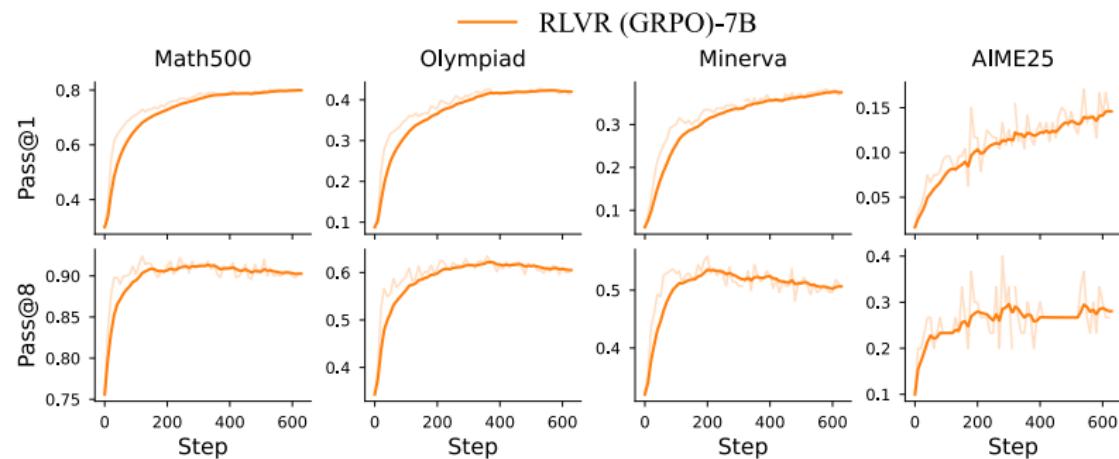
Pass@k definition:

- ▶ For each question, sample k **independent answers** from the model.
- ▶ **Pass@k** is the probability that **at least one** of these k answers is correct.
- ▶ Pass@1 is the usual top-1 accuracy.

Interpretation:

- ▶ Basically, allow answer more than one times to the same question, aiming to get at least one correct answer from the k answers. \leadsto **Test-time scaling**.

GRPO on Qwen2.5-Math



- ▶ Pass@1 and pass@8 over training steps for Qwen2.5-Math-7B.
- ▶ GRPO shows improvements on mathematical reasoning ability.

We will see in final project part III how test-time scaling can help improve mathematical reasoning.

The End.

Special thanks to

your Participation ;-)