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Information about Final

I Time: December 13 (Saturday), 3:00pm - 5:00pm (2 hours).

I Venue: Liwen Hall.

I A closed-book, closed-notes examination. No cheat sheet (this leads
to an easier exam). No other things will be allowed, such as
calculators.

I A sample exam will be available later to aid you in your review. Note
that do not go ovefitting, you need a little generalization. Hence, you
are highly recommended to go through our lecture slides and
Homework questions.
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Recap: Self-Attention
I Attention is to consider the corrections between different tokens in a

sentence.

I We use self-attention to capture the semantic relationship:

Y = attention(Q,K,V ) = softmax

(
QK>√
dk

)
V .

Illustration:

X

W(k)W(q) W(v)

KQ V

mat mul

scale

softmax

mat mul

Y
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Recap: Multi-Head Attention, Attention Masks

Multi-head attention: To capture different semantic structure by different
attentions:

Y (X) = [H1, . . . ,HH ]W (o).

Each head Hi is generated by attention.

Attention masks:

I We need attention masks to block attention to padding tokens and
future tokens (for causality during training):

Y = softmax

(
QK>√
dk

+M causal +Mpad

)
V ,

where

M ij =

{
0, allowed

−∞, blocked
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Complexity of Attention
Consider masked attention with n being sequence length.

I Embedding dimension d is often fixed, such as d = 4096, 8192.

I During pre-training, or reasoning modeling training, we often have
long-sequence training, e.g., n can scale up to 128k. Therefore, we
often focus on the scaling with n.

Complexity:

I Score matrix: S = QK> ∈ Rn×n with computation O(n2d).

I Masking + softmax on S: Store and softmax n× n scores with
computation O(n2) (softmax) and storing memory O(n2) (score
matrix and mask).

I Weighted sum: Y = softmax(S)V with computation O(n2d).

Observations:

I Overall, computation and memory are both quadratic in sequence
length n.

I Attention is not in linear complexity. One of the major drawback of
Transformers.

CUHK-Shenzhen • SDS Xiao Li 5 / 22



Flash-Attention

I Flash-attention is a technique to reduce storage memory from O(n2)
to O(nd), i.e., nearly linear in n when n is very large.

The main idea:

I Rewrites attention as a sequence of smaller block matrix operations.

I Never materializes the full n× n score matrix in GPU memory.

I Uses an online softmax algorithm to keep numerical stability while
processing tiles.

Complexity of flash-attention:

I Compute: Still O(n2d) (same as standard attention).

I Memory: Reduced from O(n2) to roughly O(nd).

For short sequences (i.e., small n), the benefit is modest. Flash-attention
is very useful to reduce GPU memory when n is very large.
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Transformer
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Transformer Layer
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Transformer Layer
I We now need to form a transformer layer.

I We want to add some residual connection to improve efficiency.

I We want to add normalization for efficiency and stability as well.

I We also want to add several MLP layer (feed-forward layer) to have
more flexibility.

Overall, a transformer layer has the form:

X

multi-head
self-attention

add & norm

MLP

add & norm

X̃

Z

I The mathematical modeling is:

Z = Norm(Y (X) +X).

X̃ = Norm(MLP(Z) +Z).

I The dimension of the output X̃
need to be the same as that of the
input X.
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Norm Method I: Layer Normalization (LayerNorm)

Consider x = (x1, . . . , xd) as one data sample, like one row of X (i.e., one
token). LayerNorm first does the following,

x̂i =
xi − µ
σ

, where µ =
1

d

d∑
i=1

xi, σ =

√√√√1

d

d∑
i=1

(xi − µ)2

I The above process is to make the data zero mean and unit variance.

It then adds trainable parameters γ = (γ1, . . . , γd) and β = (β1, . . . , βd)
to scale (γ) and shift (β) the obtained x̂i:

yi = γix̂i + βi, i = 1, . . . , d.

Finally, y = (y1, . . . , yd) will be the layer normalized data sample.

I LayerNorm can be regarded as giving a new learned mean and
variance for each data.

I LayerNorm is important to improving stability of the training process.

CUHK-Shenzhen • SDS Xiao Li 10 / 22



Norm Method II: RMSNorm

Another popular norm is Root Mean Squares Normalization (RMSNorm).

I First compute the root mean square (RMS)

RMS(x) =

√√√√1

d

d∑
i=1

x2i + ε.

where ε is a small number for numerical stability.

I Then, apply normalization using RMS

x̂i =
xi

RMS(x)
, yi = γix̂i.

γi is the trainable scaling factor.

Comparison: LayerNorm both scale and shift, while RMSNorm only scales.

I Older / classic LLMs (GPT-2, GPT-3) uses LayerNorm.

I More recent very large LLMs uses RMSNorm.
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Post-Norm and Pre-Norm

The way we outlined of applying normalization is called post-norm:

Z = Norm(Y (X) +X).

X̃ = Norm(MLP(Z) +Z).

I It post-normalizes output after residual connection.

I This is the Norm used in the “Attention is All You Need” paper.

However, modern LLMs mainly use pre-norm which pre-normalize the
input:

Z = Y (Norm(X)) +X.

X̃ = MLP(Norm(Z)) +Z.

As it is found that pre-norm provides a more stable training process.

CUHK-Shenzhen • SDS Xiao Li 12 / 22



Complexity of One Transformer Layer
Consider post-norm transformer layer:

Z = Norm(Y (X) +X), X̃ = Norm(MLP(Z) +Z).

Notations. n: sequence length, d: model dimension, dMLP: hidden size of
MLP (often dMLP ≈ 4d).

I As we studied, the attention module has computation complexity
O(n2d) and memory complexity O(n2).

In MLP module:

I Computation complexity:

O
(
nddMLP

)
(two linear layers)

I Memory for activation values:

O
(
ndMLP

)
(hidden activations)

So the overall order of complexity of the full Transformer layer is quadratic
in n.
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Transformer Architecture
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Decoder Transformer Architecture
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I This is decoder transformer, which is the architecture of GPT, Llama,
and many other popular language models.

I Transformer is to stack transformer layers multiple times (just like one
hidden layer to multiple), and add some other modules.
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Tokenization
Goal: Map raw text to a sequence of discrete tokens

“It is raining.” −→ (t1, t2, . . . , tn).

I Is token in the unit of a character or a whole word? None of them.
I Characters: very long sequences ⇒ inefficient.
I Words: huge vocabulary, many rare/unknown words.

I Modern LLMs use subword tokenization:
I Methods: BPE (GPT2), SentencePiece (Qwen3), WordPiece, etc.
I Common words are single tokens; rare words are split:

“unbelievable” → ‘‘un’’, ‘‘believ’’, ‘‘able’’

“raining” → “rain”, “ing”

I Each token is represented internally by an integer id

ti ∈ {1, . . . , V },

where V is the vocabulary size (e.g., V ≈ 30k ∼ 128k).
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Embedding Layer

I The model cannot work directly with token ids ti; it needs vectors.

I Embedding matrix shared by all embedding positions:

E ∈ RV×d, row Eti: = x
>
i ∈ R1×d.

Each token id ti is mapped to an embedding vector xi:

ti −→ xi = E
>eti ,

where eti is the one-hot vector of ti, i.e., taking out the
corresponding row of E.

I Embedding matrix E is learned, rather than designed.

I After adding positional encodings (represent order of words in your
sentence), the sequence

{x1, . . . ,xn}

is fed into the stack of masked transformer layers shown earlier.
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The Last Layer: Logistic Regression
I In the last LSM layer, it means linear transformation + softmax, i.e.,

multi-class logistic regression on the final learned feature
Z ∈ R(n+1)×d, the added token is <start>.

I The number of class is V , i.e., the vocabulary size. Using
classification to choose the next token from the vocabulary.

I The classification is done using logistic regression with lm head
W lm ∈ Rd×V , i.e., linear classification weight matrix.

Mathematically,

P =
[
p1,p2, . . . ,pn+1

]>
= softmax(ZW lm) = softmax(L).

I L = ZW lm = [l1, . . . , ln+1]
> ∈ R(n+1)×V are called logits

corresponding to each input token xi.
I pi ∈ RV is the probability distribution over the vocabulary, for

sampling the next token i, as we have shifted the position by adding
the starting token <start>.

Interpretation: Transformer uses the new attention mechanism. Its overall
idea is similar to other neural networks. Trying to extract useful features
for linear classification.
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Tied Embedding and LM Head

Tied parameters in LLMs:

I In decoder-only LMs, the same matrix (or its transpose) is often used
for the input embedding and for the LM head matrix W lm in the final
logistic regression layer.

W lm = E (or W lm = E>, depending on convention).

I This is called Tied LM head.

I it reduces parameters by V × d. This is often a very large matrix.

This is reasonable as we use the same embedding to transfer tokens to
embedding vectors, and then use the same matrix to transfer embedding
back to tokens in the vocabulary.
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Mixture of Experts (MoE)
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Mixture-of-Experts (MoE) Feed-Forward Layer

I MoE is to expand the MLP / feed-forward network (FFN), not
attention.

I In standard Transformers, each token goes through the same MLP
layer.

I In a MoE MLP layer, we have multiple MLPs (experts) and a router
that chooses a small subset of experts for each token.

I MoE is a simple architecture scaling approach that can expand the
representation power of transformer (said by OpenAI people).

…
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Figure 2 | Illustration of the basic architecture of DeepSeek-V3. Following DeepSeek-V2, we
adopt MLA and DeepSeekMoE for efficient inference and economical training.

strategy (Wang et al., 2024a) for DeepSeekMoE to mitigate the performance degradation induced
by the effort to ensure load balance. Figure 2 illustrates the basic architecture of DeepSeek-V3,
and we will briefly review the details of MLA and DeepSeekMoE in this section.

2.1.1. Multi-Head Latent Attention

For attention, DeepSeek-V3 adopts the MLA architecture. Let 3 denote the embedding dimen-
sion, <⌘ denote the number of attention heads, 3⌘ denote the dimension per head, and hB 2 R3

denote the attention input for the B-th token at a given attention layer. The core of MLA is the
low-rank joint compression for attention keys and values to reduce Key-Value (KV) cache during
inference:

c +B =,⇡ +hB, (1)

[k⇠
B,1; k⇠

B,2; ...; k⇠
B,<⌘] = k⇠

B =,* c +B , (2)

k'
B = RoPE(, 'hB), (3)

kB,7 = [k⇠
B,7; k'

B ], (4)

[v⇠B,1; v⇠B,2; ...; v⇠B,<⌘] = v⇠B =,*+c +B , (5)

7

(MLP)
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Mathematical Definition of MoE

I Let ut ∈ Rd be the hidden state / activation value of token xt

entering a MoE MLP. The router produces a sparse weighting over
Nr experts:

gt = Top-Kr

(
softmax(Rut)

)
∈ RNr ,

where R ∈ RNr×d is the router matrix and Kr is the number of
activated experts per token (e.g., Kr = 2).

I Only the top-Kr entries of gt are kept, others are 0, i.e., only the
top-Kr routed experts are chosen.

Overall, the MoE layer per token is mathematically defined as

h′t = ut︸︷︷︸
skip connection

+

Ns∑
i=1

MLP
(s)
i (ut)︸ ︷︷ ︸

shared MLP

+

Nr∑
i=1

gt[i] ·MLP
(r)
i (ut)︸ ︷︷ ︸

routed expert

.

 Next lecture: Large language models (LLMs).
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