
DDA5001 Machine Learning
Neural Networks (Part III): SGD and Adam

Xiao Li

School of Data Science
The Chinese University of Hong Kong, Shenzhen

CUHK-Shenzhen • SDS Xiao Li 1 / 29

Recap: Forward Pass in Backpropagation
Forward pass: Feed data sample xi into the network, use the current
parameters V and W to compute and store

I V xi

I zi = σ(V xi)

I Wzi

I fθ(xi) = h(Wzi), `i(θ) = ‖yi − fθ(xi)‖22
x0

x1

...

xd

z0

z1

...

...

...

y1

yK

zM
x

V

z = �(V x)

W

CUHK-Shenzhen • SDS Xiao Li 2 / 29

Recap: Backward Pass in Backpropagation

Backward pass:
Compute the gradient of the second layer

I δi = 2(h(Wzi)− yi)� h′(Wzi)

I ∂`i
∂W = δiz

>
i

Backpropagate the gradient to zi:

I ∂`
∂zi

=W>δi

Compute the gradient of the first layer:

I ∂`i
∂V =

(
∂`
∂zi
� σ′(V xi)

)
x>i

backpropagation is an efficient way of computing the gradient of NN
learning problem.

Given the computed gradient, we can apply gradient-based training
algorithm for training NN. Which algorithm should we choose?

CUHK-Shenzhen • SDS Xiao Li 3 / 29

Stochastic Gradient Descent (SGD)

Adam Family

CUHK-Shenzhen • SDS Xiao Li 4 / 29

Structured Learning Problem: Finite-Sum Structure
In LS, LR, SVM, and NN, we always have

min
θ∈Rd

L(θ) = 1

n

n∑
i=1

`(θ;xi, yi)︸ ︷︷ ︸
`i(θ)

each `i(θ) is called a component function. We can use BP to compute
∇L(θ) if it is NN.

Example: Least squares

min
θ∈Rd

1

n
‖Xθ − y‖22 =

1

n

n∑
i=1

(θ>xi − yi)2︸ ︷︷ ︸
`i(θ)

I Each `i corresponds to one training data point (xi, yi).

I The above structure is called finite-sum and the problem is called
finite-sum optimization.

I Finite-sum optimization is ubiquitous in machine learning, including
most of the (supervised) learning problems.

CUHK-Shenzhen • SDS Xiao Li 5 / 29

Modern Large-Scale Machine Learning Problems
One of the key features of modern machine learning problems is
large-scale, i.e., the number of training data n is very large (guided by VC
analysis). Such a problem is called large-scale machine learning.

I One notable example is training NN.

We have the following two observations:

I The property we want for an algorithm is fast convergence. In terms
of optimization, we should use fast algorithm (fast in terms of
iteration) like first-order method (GD/AGD) or even second-order
method (Newton).

I Guided by VC analysis, we just need to choose a fine H with small
generalization error and then design a fast learning algorithm
(GD/AGD or Newton) to learn θ̂ by solving the learning problem.
Then, the learning process is done.

What is missed? We have not considered the computational issue of the
training algorithm when n is large-scale.

Let us take GD as an example.
CUHK-Shenzhen • SDS Xiao Li 6 / 29

Gradient Descent in Large-scale Finite-sum Structure
GD:

θk+1 = θk − µk∇L(θk)

I What is the structure of ∇L(θk)?
Due to the linearity of gradient operator, we have

∇L(θk) = ∇
(
1

n

n∑
i=1

`i(θk)

)

=
1

n

n∑
i=1

∇`i(θk)

I Observation: The gradient of L is the summation of the gradients of
all the component functions.

I It can be costly and even prohibitive to the compute the full gradient
when n is very large.

I Newton’s method is even much worse when n is so large.

 Motivates the design of stochastic optimization methods.

CUHK-Shenzhen • SDS Xiao Li 7 / 29

Stochastic Gradient Descent
Consider minθ∈Rd L(θ) = 1

n

∑n
i=1 `i(θ), where n is very large.

The idea: Can we just use gradient information of only one component
function rather than the full gradient for algorithmic update?

Algorithmic design framework

θk+1 = argmin
θ∈Rd

{
qk(θ) +

1

2µk
‖θ − θk‖22

}

I The qk is the linear approximation of L using the gradient of only one
component function

qk(θ) = L(θk) + 〈∇`ik(θk),θ − θk〉,

`ik is the ik-th component function at k-th iteration, ∇`ik(θk) is
called stochastic gradient.

Stochastic gradient descent: SGD

θk+1 = θk − µk∇`ik(θk).
CUHK-Shenzhen • SDS Xiao Li 8 / 29

SGD: Geometric Illustration

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

2

4

6

8

10

12

L(✓)

✓k

CUHK-Shenzhen • SDS Xiao Li 9 / 29

SGD vs. GD

GD:

θk+1 = θk − µk ∇L(θk)︸ ︷︷ ︸
1
n

∑n
i=1∇`i(θk)

I Expensive iteration when n is
very large.

I Opportunities for parallelism.

SGD:

θk+1 = θk − µk∇`ik(θk)

I Very cheap iteration.

I Sequential use of data,
nonparallel.

Efficiency of SGD over GD:

I Assume all the n training data (xi, yi) are the copies of one data
(somewhat extreme).

I GD is n times more expensive than SGD.

CUHK-Shenzhen • SDS Xiao Li 10 / 29

The Choice of ik

SGD:
θk+1 = θk − µk∇`ik(θk)

Parameters in SGD needed to be preset:

I The usual ones: learning rate µk, initial point θ0, etc.

I The additional one: The component function index ik at each
iteration.

Random choice: At k-th iteration choose ik uniformly at random from
{1, . . . , n}.

Theoretical justification: Unbiased approximation of the full gradient.

Eik [∇`ik(θk)] =
1

n

n∑
i=1

∇`i(θk) = ∇L(θk)

I In expectation, SGD is GD.

CUHK-Shenzhen • SDS Xiao Li 11 / 29

Learning Rate in SGD
I One choice is µk = c√

k
. Similar to subgradient method, SGD is not a

descent method. Hence, we need to use decaying learning rate in
SGD.

I Apart from the decaying learning rate µk = c√
k

, step-decay is also

utilized in practice.

2µ

I Step-decay: Whenever progress slows down, we half the learning rate
and continue update.

CUHK-Shenzhen • SDS Xiao Li 12 / 29

Cosine Scheduler Learning Rate
There is another famous and widely used learning rate schedule, called
cosine scheduler. It requires to specify:

I The maximum initial learning rate µ0.

I The minimal final learning rate µmin.

I The preset total number of iteration T .

Then, cosine scheduler is to automatically decay µ0 to µmin in T iterations:

µk = µmin +
1

2
(µ0 − µmin)

(
1 + cos

(
k

T
π

))
.

CUHK-Shenzhen • SDS Xiao Li 13 / 29

Application: Text Classification with SVM

I Dataset

- RCV1 document corpus.
- 781265 training examples (= n), 23149 testing examples.
- 47152 features (= d).

I Task

- Recognizing documents of category CCAT.

I Machine Learning model: Train soft-margin SVM classifier

min
θ∈Rd,b∈R

L(θ) := 1

n

n∑
i=1

{
max(0, 1− yi(θ>xi + b)) + λ‖θ‖22

}

CUHK-Shenzhen • SDS Xiao Li 14 / 29

.

Random Reshuffling

CUHK-Shenzhen • SDS Xiao Li 15 / 29

Random Reshuffling: The More Practical SGD
I The uniform at random choice of ik in SGD is not practical. It is

mainly for theoretical analysis / motivation of SGD.

I In SGD, we need to generate a random number ik from {1, . . . , n} at
each iteration. This can be time costly.

I In addition, uniformly random sampling may not utilize the training
data fully in one epoch. Here, one epoch implies n iterations of SGD
(one epoch means utilizing all n data points, hence n iterations).

Random Reshuffling (RR)

In k-th epoch, we first uniformly at random permute the order {1, . . . , n}
to get σk. Then, we update by visiting sequentially the component function
indexed by σk. The resulting algorithm is called Random Reshuffling (RR).

RR vs SGD: Suppose n = 5, one epoch of SGD and RR may be

RR f2 f5 f4 f1 f3
SGD f3 f2 f2 f1 f3

I RR uses all the samples in one epoch.

CUHK-Shenzhen • SDS Xiao Li 16 / 29

Random Reshuffling: Experiment
Implement two algorithms on simple LS.

103

10−3

10−9

10−15

Epoch

RR
SGD

In summary:

I RR converges faster than SGD empirically.

I RR is easy to implement due to simple permutation in one epoch.

I What is commonly implemented in practice is indeed RR; people just
call it SGD. Check PyTorch’s SGD implementation, it is RR.

CUHK-Shenzhen • SDS Xiao Li 17 / 29

.

SGD with Momentum

CUHK-Shenzhen • SDS Xiao Li 18 / 29

SGD with Momentum

We can also include momentum acceleration technique to speed up the
convergence speed of SGD.

SGD with momentum:

θk+1 = θk −mk

mk = µk∇`ik(θk) + βkmk−1

SGD with Nesterov’s momentum:

θk+1 = wk − µk∇`ik(wk)

wk = θk +
k − 1

k + 2
(θk − θk−1)

SGD with momentum can substantially improve the training speed
compared to SGD only.

CUHK-Shenzhen • SDS Xiao Li 19 / 29

Stochastic Gradient Descent (SGD)

Adam Family

CUHK-Shenzhen • SDS Xiao Li 20 / 29

Adaptive Learning Rate Method: AdaGrad
Motivations:

I All the optimization algorithms we studied now assign the same
learning rate to all coordinates in θ.

I We might need different learning rates for different coordinates in θ.

AdaGrad is an important method that utilizes adaptive learning rate.

I The idea: Normalize each gradient coordinate by the past gradients.

I It has the following update:

θk+1 = θk − µk
gk√∑k
t=1 g

2
t

,

where gk = ∇`ik(θk) is the stochastic gradient. Vector division,
square root, and square operations are all element-wise.

I AdaGrad penalizes the gradient coordinate when it has too large
value, while increase the small one for exploration.

AdaGrad reduces the burden for tuning learning rate, and it is often more
reliable than SGD.

CUHK-Shenzhen • SDS Xiao Li 21 / 29

Adam: Momentum Meets Adaptive Learning Rate
Observations:

I SGD with momentum can improve convergence speed.

I Adaptive learning rate like AdaGrad can reduce learning rate tuning
and stablize convergence.

How about combine these two techniques? Adam method.

I Adam uses a moving averaging for updating the momentum and
adaptive learning rate.

Momentum update:

mk = β1mk−1 + (1− β1)gk, with m0 = 0.

Adaptive learning rate update:

vk = β2vk−1 + (1− β2)g2k, with v0 = 0.

gk = ∇`ik(θk) is the stochastic gradient.

Rule of thumb: β1 = 0.9, β2 = 0.999.

CUHK-Shenzhen • SDS Xiao Li 22 / 29

Understanding Moving Averaging

If we expand the update of momentum and adaptive learning rate in
Adam, we will have

mk = βk1m0 + βk−11 (1− β1)g1 + · · ·+ β1(1− β1)gk−1 + (1− β1)gk,

and

vk = βk2v0 + βk−12 (1− β2)g21 + · · ·+ β1(1− β2)g2k−1 + (1− β2)g2k,

Interpretations: The moving averaging exponentially decays the importance
of the historical records, while emphasizes more on the most recent ones.

CUHK-Shenzhen • SDS Xiao Li 23 / 29

Adam: Algorithmic Procedure

Adam

1. Compute a stochastic gradient gk = ∇`ik(θk);
2. Update momentum: mk = β1mk−1 + (1− β1)gk;

3. Update adaptive learning rate vk = β2vk−1 + (1− β2)g2k;

4. Bias-corrected momentum: mk =mk/(1− βk1);
5. Bias-corrected adaptive learning rate: vk = vk/(1− βk2);
6. Update:

θk+1 = θk − µk
mk√

vk + 10−8
.

Repeat until convergence.

I The bias-correction term is used to make mk and vk unbiased
estimators for E[gk] and E[g2k]. Not sure if this step is crucial for
practical performance.

I Adam is widely used in practice for training NN.

CUHK-Shenzhen • SDS Xiao Li 24 / 29

Weight Decay Issue in Adam

Weight decay regularization is widely utilized in NN training, since
otherwise it easily has overfitting due to strong representation power of
NN.

I Therefore, Adam is often used together with weight decay.

I However, how people use it is through changing the stochastic
gradient:

gk = ∇`ik(θk) + λθk.

Recall that the gradient of weight decay term λ
2 ‖θ‖2 is λθ.

Issues:

I gk is not directly used for updating, it is used to update momentum
and also normalized by adaptive learning rate.

I This makes it unclear whether we have weight decay nor not.

I It is not be equivalent to the `2-regularization we studied in the
regularization part.

CUHK-Shenzhen • SDS Xiao Li 25 / 29

AdamW: Decoupled Weight Decay

Idea: Decouple the weight decay term and use the true `2-regularization.
 the AdamW method.

I All the steps of AdamW keeps the same as that of the Adam, except
for the update:

θk+1 = θk − µk
mk√

vk + 10−8
− µkλθk−1.

I This additional λθk−1 corresponds to the gradient of the weight decay
term added to training loss function directly, namely, for NN training

min
θ
L(θ) + λ

2
‖θ‖2,

AdamW applies Adam for minL while GD for min the weight decay
regularization.

I AdamW is truly applying `2-regularization. Thus, for huge NN
training problems, AdamW often has better generalization than
Adam, as better regularization improves generalization.

CUHK-Shenzhen • SDS Xiao Li 26 / 29

Experiments: Setup
We now conduct experiments on SGD, SGD momentum, SGD nesterov
momentum, Adam, AdamW for training NN.

I Task: Classification on the MNIST dataset:

I Model: One hidden layer (two layer) NN, with M = 64, number of
classes K = 10, σ is ReLU, h is softmax.

x0

x1

...

xd

x0 = 1
z0

z0 = 1

z1

...

...

...

y1

yK

Input
layer

hidden
layer

output
layer

zM

CUHK-Shenzhen • SDS Xiao Li 27 / 29

Experiments: Results1

0 500 1000 1500 2000 2500
iterations

0.1

0.2

0.3

0.4

0.5

0.6
training_loss

SGD
SGD-Nesterov Momentum
SGD-Momentum
Adam
AdamW

0 500 1000 1500 2000 2500
iterations

0.2

0.4

0.6

0.8

1.0
test_acc

SGD
SGD-Nesterov Momentum
SGD-Momentum
Adam
AdamW

I SGD is slow.

I Adam family has the best performance, illustrating why they are quite
ubiquitous in practice.

1Code is available at https://www.kaggle.com/code/jonery/lecture-demo. You need to
register Kaggle to use it.

CUHK-Shenzhen • SDS Xiao Li 28 / 29

https://www.kaggle.com/code/jonery/lecture-demo

Further Study and Reading

I Stochastic optimization methods are at the core of modern large-scale
machine learning, serving as one of the foundations of deep learning.

I A very active research area in machine learning and optimization.

Further readings:

I Bottou, L., Curtis, F. E., Nocedal, J. (2018). Optimization methods
for large-scale machine learning. Siam Review, 60(2), 223-311.

I Kingma, D. P., Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980

I Loshchilov, I., Hutter, F. (2017). Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101.

 Next lecture: Introductory deep learning.

CUHK-Shenzhen • SDS Xiao Li 29 / 29

	Stochastic Gradient Descent (SGD)
	Adam Family

