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Basic Notions of Linear Algebra
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Basic Notions of Linear Algebra

> . € R" is a real-valued n-dimensional column vector; i.e.,
€1
T2
x=| .|, x;€RVi
Tn

» You can regard the vector x € R™ as a point in the n-dimensional
R™ (Think of n =2 and n = 3).

» Addition of vectors. The addition of two vectors is defined by adding
corresponding coordinates, i.e.,
1 Y1 1+ Y1
T = : ;
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Basic Notions of Linear Algebra

» Multiplication. The multiplication of a scalar with a vector is defined
by performing multiplication in each coordinate:

where a € R.

» Commutativity. € +y =y + « for all z,y € R™.

» Distributive properties a(x + y) = ax + ay and (a + b)x = ax + bx
for all a,b € R and =,y € R".

» Transpose of vector. Let @ = (21,2, -+ ,2,) € R™. The notation

2" means that

513T = [.’El o v l’n] .
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Basic Notions of Linear Algebra

> . We say that a finite collection
C ={x1,x9,...,xy} of vectors in R™ is if there
exist scalars ay,...,a,, € R, not all of them are zero, such that
m
Z a; X; = 0.
i=1
The collection C = {@x1,xa, ..., &, } is said to be linearly
independent if it is not linearly dependent.
> . The set of all linear combinations of {x1,x,...,x,,} is called
the span of {x1,x3,..., 2}, ie.,
span{x1, T2,..., T} = {d> ivj a;x; : @ € R™}
> . A basis of the n-dimensional space R" is a collection of vectors

in R™ that is linearly independent and spans R™. For example,
1 |3 1| (0
ERRERRH)
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Basic Notions of Linear Algebra

> . Given two vectors x € R",y € R", their inner product

is defined as .
o9) =2Ty =3 2

i=1
We say that «,y € R" are ifx'y=0.
-
| 2 . For vector x = [931 To - l‘n] c R"™,

which measures the length of x. For simplicity, we often only write
|lz|| to represent ||z||2.

» More generally, a [I- 1] : R™ — R is a function that satisfies
e ||z|| >0 forall £ # 0 and ||z|| = 0 only if x = 0;
o |lax|| = |a|l|z|| for z € R™ and a € R;
o [z +yl < |+ |yl forall z,y € R ( )
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Basic Notions of Linear Algebra

| . We now introduce common norms in R"—the Holder
p-norm, 1 < p < oo, which are defined as follows:

n 1/p
], = (ZWV’)
i=1

[®]loo = max |z;].
1<i<n

for 1 <p < oo and

» Special cases. When p = 2, it reduces to the ¢o-norm. When p =1, it
reduces to the ¢1-norm, i.e.,

n
Izl =) lzil.
i=1

a'y < |zlllyll. Va,yeR"
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Basic Notions of Linear Algebra

> . We use R™*™ to denote the set of m X n arrays whose
components are from R. We can write a matrix A € R™*" as

ail - Qip
A= s amERW,j.
Am1 Qmn
> . Given an m X n matrix A, its transpose A is

defined as the following n x m matrix:

aix G2 - Gml
= a2 G2 - Gm2
A = y
A1n  A2n e Amn
> . An m x m real matrix A is said to be symmetric if
A=AT
Xiao Li 9 /31
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Basic Notions of Linear Algebra

» Matrix-matrix multiplication. The matrix-matrix multiplication
between A € R™*™ and B € R"*? is defined as

n
R™*P 5 C = AB where ¢;; = Zaikbkj.
k=1

lllustration:
i1 Ci2 (13 ailp a2 ais bi1 b2 bis
C21 C22 C23| = [G21 G22 G23 ba1  baa  bos
€31 C32 C33 a31 aszp asz| |b31 b3x a3

The matrix-vector multiplication can be viewed as a special case of
matrix-matrix multiplication, i.e., with A € R™*" and b € R", we
have

R™>c=Ab where ¢; = Z a;ibi.
k=1
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Basic Notions of Linear Algebra

» Three perspectives for matrix-matrix multiplication. There are three

(equivalent) important ways for interpreting C = AB:
e The first one is by definition

n
ciy = ambry, Vi=1,2,...m. j=12,..,p.

k=1

e The second one is by
C = Zakka,
k=1

where ax and bz are the k-th column and row of A and B,
respectively.
e The third one is by matrix-vector product

c;=Ab;, Yji=1,2,...p.
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Basic Notions of Linear Algebra

> . The rank of a matrix A € R™*", denoted by rank(A), is
defined as the number of elements of a maximal linearly independent
subset of its columns or rows. Some facts about the rank of a matrix:
o rank(A) = rank(A");
e rank(A + B) < rank(A) + rank(B);
e rank(AB) < min{rank(A), rank(B)}.
> . An n X n square matrix A is said to be invertible if
the columns of A has full-rank. The inverse of the matrix A is
denoted as A~ !, and we have

AA ' =A'A=1
Facts:

o (ATH ' =A.
e (AB)"' =B 1A' where A, B are square and invertible.
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Basic Notions of Linear Algebra

> . An n X n square matrix A is said to be
orthogonal, or orthonormal, is a real square matrix whose columns
and rows are orthonormal vectors. That is,

ATA=AAT =1
In another word, for orthogonal matrix A, we have
AT =471
> .Annxn

real matrix A is said to be PSD (PD) if x T Az > 0 (> 0) for all
x € R” (for all x € R™ \ {0}).
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Basic Notions of Multivariate Calculus
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Basic Notions of Multivariate Calculus

> . It is a generalization of derivative to multi-dimensional
functions. Assume f(x) = f(x1, 2, ..., Zn) is continuously
differentiable. Then, we denote the gradient of f by (an n x 1 vector):

Viz) =

Facts:
> If f(x) =c"x, then Vf(z) =c.
> If f(x) =a' Mz (M is symmetric), then: Vf(x) = 2Mzx.

» First-order Taylor expansion. The first-order Taylor expansion yields:

fl+d) = f(x)+ Vi) d+o(ld]), |d]—o0.

CUHK-Shenzhen @ SDS Xiao Li 15 /31



Basic Notions of Multivariate Calculus

Illustration of first-order Taylor expansion:

y=1+4+2

_3 —V—l 1 2 3

» Approximate the function very well around .

» Important notion for later first-order algorithm development.
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Basic Notions of Probability and Statistics
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Basic Notions of Probability and Statistics

> . Suppose X is a random variable, its expectation is
denoted as
E[X].
Suppose X takes discrete values x1, ...,z with probability

Ply. .., Pk, then
k
i=1

Suppose X takes continuous values in (—oo, +00) with density p(z),

then
+oo
E[X] :/ p(x)zde.
— 00
> . Suppose X is a random variable, its variance is denoted as

Var(X) = E[(X — E[X])?].
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Basic Notions of Probability and Statistics

> . X =[X1,...,X,]" is a random vector if each
coordinate is a random variable.

» Expectation of random vector. Suppose X is an n-dimensional
random vector, its expectation is denoted as

E[X] = [E[X4],...,E[X,]]".

> . Suppose X = [X1,...,X,]" is an n-dimensional
random vector, its covariance matrix is n X n matrix defined as

VarlX] = E[(X — E[X)(X — E[X])7].
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Basic Notions of Probability and Statistics

> . A random variable X is said to follow N '(u, 0?)
(Gaussian distribution with mean p and variance o?) if its probability
density function (PDF) is given by

p(z) = ;M exp <; <x0u)2>

> . We say the random vector
X € R? follows Gaussian distribution with mean g and covariance
matrix X (assumed to be PD), if its PDF is given by

pla|p, ) = WIEI%” exp (—;(w —p)'E Nz - u))

]
} -
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Basic Notions of Optimization

> . The seek of maximum or minimum. Formally speaking,
finding the minimum value of f over R™ is written as
i 0).
Inin £(8)
> . Find the point 8* (called global minimizer/global

optimum /optimal solution) that achieves the minimum value of f
over R”

0* = argmin f(0).
OcR™

Clearly, f(6*) = mingegrn f(0).
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Concepts of Learning
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Components of Supervised Learning: Motivation from An Example
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Learning Example: Credit Approval

Task: Learning to predict if one applicant should be approved a credit
card.

Applicant’s info.:

age 25
gender male
salary 100000 RMB

citizenship CN
years in job 2 year

Question: should we approve credit card to the applicant?

How to automate such a task by using machine learning methods?
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Data: Samples

» Collect a series of historical data

age | gender | salary | citizenship | years in job
Applicant 1 | 2.5 1 10 3 1
Applicant 2 | 2.8 0 8 6 5
Applicant 3 | 1.6 0 0 4 0
Applicant 4 | 2.3 1 8 2 4
Applicant 5 | 3 0 4 2 1
We have the data matrix ( ) X as
25 1 10 3 1
28 0 8 6 5
X=1(16 0 0 4 0
23 1 8 2 4
3 0 4 21

T

» Each row x; is called a

» Each column is called a
about the j-th feature.
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Data: Labels

» Collect the corresponding

age | gender | salary | citizenship | years in job | approve
App. 1| 25 1 10 3 1 +1
App. 2 | 2.8 0 8 6 5 +1
App. 3| 1.6 0 0 4 0 -1
App. 4| 23 1 8 2 4 +1
App. 5| 3 0 4 2 1 -1
We have the label y as

+1

+1

y=|—-1

+1

-1

» Each y; represents the label of the i-th applicant.

» Label implies supervision.
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Supervised Learning: Hypothesis/Model

» We have an underlying and unknown geEH
g:X—=Yy

where X is the input space (set of all possible inputs), while ) is the
output space (label space).
In our example, g is the target function that maps x; to y;.

» Learn a model f from the ‘H based on the
{(x1,91), (@2, 92), - - (T, yn) }-
Ideally, f should fully capture the patterns in data, i.e., it
approximates well the target function g

f = g

» The hypothesis space H is one of the hardest parts to be
pre-determined in a learning process. One typical instance of H is the
set of all possible linear fit to the data (results in ), while
another popular choice is nonlinear model (e.g., ).

CUHK-Shenzhen @ SDS Xiao Li 27 /31



Supervised Learning: Hypothesis/Model

Parametrization:

’ f = fo € H is often parameterized by the parameters 6

Example:

» In linear regression, fo(x) = 0" x is all possible linear fits and @ is the
parameters of the model. A specific @ determines a specific model.

» In deep learning, fg is the neural network and @ represents weights
(network parameters), respectively.

Two main categories of hypothesis space H:
» Linear
> Linear regression
» Linear classification
» Nonlinear
» Neural networks
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Supervised Learning: Learning Problem and Algorithm
» Given training dataset (z1,91),...,(Tn, Yn).
» Choose the hypothesis fg.
» Choose the {:R—R.

> Learning/optimization problem

BfargmlnHZK Jo(xi), yi) (P)

OcRd

~» Optimization algorithm A is designed to solve (P).

~~ After learning to obtain 9, we get the learned model f5. Then, one can
use the learned f5 to do prediction.
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Supervised Learning: Components

Formalization:
» Target function g: X — Y  (underlying credit approval model)
» Training dataset: (®1,91),-..,(n,yn) (historical records)
» Hypothesis space H  (learning scope to approximate g)
» Hypothesis/model: fg  (model to be determined)

» Optimization algorithm: A (learning the model from data)
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Supervised Learning: High-level View

unknown target function training samples
g: X=Y (®1,91), (T2, 92), -

learning algorithm Learned model
A fa

hypothesis/model
fo€eH

Hopefully,
fa=g
Predict/decision: When a new sample data ( ) @ comes, the label
is predicted as:
y <« fa(@).

~~ Next lecture: Linear classification and linear regression.
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