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Basic Notions of Linear Algebra

I Vector. x ∈ Rn is a real-valued n-dimensional column vector; i.e.,

x =


x1
x2
...
xn

 , xi ∈ R ∀i.

I You can regard the vector x ∈ Rn as a point in the n-dimensional
linear space Rn (Think of n = 2 and n = 3).

I Addition of vectors. The addition of two vectors is defined by adding
corresponding coordinates, i.e.,x1...

xn

+

y1...
yn

 =

x1 + y1
...

xn + yn

 ,
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Basic Notions of Linear Algebra

I Multiplication. The multiplication of a scalar with a vector is defined
by performing multiplication in each coordinate:

a

x1...
xn

 =

ax1...
axn

 ,
where a ∈ R.

I Commutativity. x+ y = y + x for all x,y ∈ Rn.

I Distributive properties a(x+ y) = ax+ ay and (a+ b)x = ax+ bx
for all a, b ∈ R and x,y ∈ Rn.

I Transpose of vector. Let x = (x1, x2, · · · , xn) ∈ Rn. The notation
x> means that

x> =
[
x1 x2 · · · xn

]
.
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Basic Notions of Linear Algebra
I Linear independence. We say that a finite collection
C = {x1,x2, . . . ,xm} of vectors in Rn is linearly dependent if there
exist scalars a1, . . . , am ∈ R, not all of them are zero, such that

m∑
i=1

aixi = 0.

The collection C = {x1,x2, . . . ,xm} is said to be linearly
independent if it is not linearly dependent.

I Span. The set of all linear combinations of {x1,x2, . . . ,xm} is called
the span of {x1,x2, . . . ,xm}, i.e.,
span{x1,x2, . . . ,xm} := {

∑m
i=1 aixi : a ∈ Rm}

I Basis. A basis of the n-dimensional space Rn is a collection of vectors
in Rn that is linearly independent and spans Rn. For example,{[

1
2

]
,

[
3
4

]}
and

{[
1
0

]
,

[
0
1

]}
are bases of R2.
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Basic Notions of Linear Algebra

I Inner product. Given two vectors x ∈ Rn,y ∈ Rn, their inner product
is defined as

〈x,y〉 = x>y =

n∑
i=1

xiyi

We say that x,y ∈ Rn are orthogonal if x>y = 0.

I (Euclidean) `2-norm. For vector x =
[
x1 x2 · · · xn

]> ∈ Rn,

‖x‖2 =
√
x>x =

√√√√ n∑
i=1

x2i ,

which measures the length of x. For simplicity, we often only write
‖x‖ to represent ‖x‖2.

I More generally, a norm ‖ · ‖ : Rn → R is a function that satisfies

• ‖x‖ > 0 for all x 6= 0 and ‖x‖ = 0 only if x = 0;
• ‖ax‖ = |a|‖x‖ for x ∈ Rn and a ∈ R;
• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ Rn (triangle inequality)
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Basic Notions of Linear Algebra

I Hölder p-norm. We now introduce common norms in Rn—the Hölder
p-norm, 1 ≤ p ≤ ∞, which are defined as follows:

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

for 1 ≤ p <∞ and
‖x‖∞ = max

1≤i≤n
|xi|.

I Special cases. When p = 2, it reduces to the `2-norm. When p = 1, it
reduces to the `1-norm, i.e.,

‖x‖1 =

n∑
i=1

|xi|.

I Cauchy-Schwarz inequality.

x>y ≤ ‖x‖2‖y‖2 ∀x,y ∈ Rn.
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Basic Notions of Linear Algebra

I Matrix. We use Rm×n to denote the set of m× n arrays whose
components are from R. We can write a matrix A ∈ Rm×n as

A =

a11 · · · a1n
...

. . .
...

am1 · · · amn

 , ai,j ∈ R ∀i, j.

I Transpose of Matrix. Given an m× n matrix A, its transpose A> is
defined as the following n×m matrix:

A> =


a11 a21 · · · am1

a12 a22 · · · am2

...
...

. . .
...

a1n a2n · · · amn

 ,
I Symmetric matrix. An m×m real matrix A is said to be symmetric if
A = A>.
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Basic Notions of Linear Algebra

I Matrix-matrix multiplication. The matrix-matrix multiplication
between A ∈ Rm×n and B ∈ Rn×p is defined as

Rm×p 3 C = AB where cij =

n∑
k=1

aikbkj .

Illustration:c11 c12 c13
c21 c22 c23
c31 c32 c33

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

b11 b12 b13
b21 b22 b23
b31 b32 b33


The matrix-vector multiplication can be viewed as a special case of
matrix-matrix multiplication, i.e., with A ∈ Rm×n and b ∈ Rn, we
have

Rm 3 c = Ab where ci =

n∑
k=1

aikbk.
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Basic Notions of Linear Algebra

I Three perspectives for matrix-matrix multiplication. There are three
(equivalent) important ways for interpreting C = AB:

• The first one is by definition

cij =

n∑
k=1

aikbkj , ∀i = 1, 2, . . . ,m. j = 1, 2, . . . , p.

• The second one is by outer product

C =
n∑

k=1

akb
>
k ,

where ak and b>k are the k-th column and row of A and B,
respectively.

• The third one is by matrix-vector product

cj = Abj , ∀j = 1, 2, . . . , p.
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Basic Notions of Linear Algebra

I Rank. The rank of a matrix A ∈ Rm×n, denoted by rank(A), is
defined as the number of elements of a maximal linearly independent
subset of its columns or rows. Some facts about the rank of a matrix:

• rank(A) = rank(A>);
• rank(A+B) ≤ rank(A) + rank(B);
• rank(AB) ≤ min{rank(A), rank(B)}.

I Matrix inverse. An n× n square matrix A is said to be invertible if
the columns of A has full-rank. The inverse of the matrix A is
denoted as A−1, and we have

AA−1 = A−1A = I.

Facts:

• (A−1)−1 = A.
• (AB)−1 = B−1A−1, where A,B are square and invertible.
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Basic Notions of Linear Algebra

I Orthogonal matrix. An n× n square matrix A is said to be
orthogonal, or orthonormal, is a real square matrix whose columns
and rows are orthonormal vectors. That is,

A>A = AA> = I

In another word, for orthogonal matrix A, we have

A> = A−1.

I Positive semi-definite (definite), abbrev. PSD (PD), matrix. An n× n
real matrix A is said to be PSD (PD) if x>Ax ≥ 0 (> 0) for all
x ∈ Rn (for all x ∈ Rn \ {0}).
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Basic Notions of Multivariate Calculus
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Basic Notions of Multivariate Calculus

I Gradient. It is a generalization of derivative to multi-dimensional
functions. Assume f(x) = f(x1, x2, ..., xn) is continuously
differentiable. Then, we denote the gradient of f by (an n× 1 vector):

∇f(x) =


∂f
∂x1

...
∂f
∂xn


Facts:
I If f(x) = c>x, then ∇f(x) = c.
I If f(x) = x>Mx (M is symmetric), then: ∇f(x) = 2Mx.

I First-order Taylor expansion. The first-order Taylor expansion yields:

f(x+ d) = f(x) +∇f(x)>d+ o(‖d‖), ‖d‖ → 0.
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Basic Notions of Multivariate Calculus

Illustration of first-order Taylor expansion:

−3 −2 −1 1 2 3

2

4

y = ex

y = 1 + x

I Approximate the function very well around x.

I Important notion for later first-order algorithm development.
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Basic Notions of Probability and Statistics
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Basic Notions of Probability and Statistics

I Expectation. Suppose X is a random variable, its expectation is
denoted as

E[X].

Suppose X takes discrete values x1, . . . , xk with probability
p1, . . . , pk, then

E[X] =

k∑
i=1

pixi.

Suppose X takes continuous values in (−∞,+∞) with density p(x),
then

E[X] =

∫ +∞

−∞
p(x)xdx.

I Variance. Suppose X is a random variable, its variance is denoted as

Var(X) = E[(X − E[X])2].
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Basic Notions of Probability and Statistics

I Random vector. X = [X1, . . . , Xn]
> is a random vector if each

coordinate is a random variable.

I Expectation of random vector. Suppose X is an n-dimensional
random vector, its expectation is denoted as

E[X] = [E[X1], . . . ,E[Xn]]
>.

I Covariance matrix. Suppose X = [X1, . . . , Xn]
> is an n-dimensional

random vector, its covariance matrix is n× n matrix defined as

Var[X] = E[(X − E[X])(X − E[X])>].
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Basic Notions of Probability and Statistics
I Gaussian distribution. A random variable X is said to follow N (µ, σ2)

(Gaussian distribution with mean µ and variance σ2) if its probability
density function (PDF) is given by

p(x) =
1√
2πσ

exp

(
−1

2

(
x− µ
σ

)2
)

I Multivariate Gaussian distribution. We say the random vector
X ∈ Rd follows Gaussian distribution with mean µ and covariance
matrix Σ (assumed to be PD), if its PDF is given by

p(x|µ,Σ) =
1

(2π)d/2
1

|Σ|1/2 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
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Basic Notions of Optimization
I Optimization. The seek of maximum or minimum. Formally speaking,

finding the minimum value of f over Rn is written as

min
θ∈Rn

f(θ).

I Global minimizer. Find the point θ? (called global minimizer/global
optimum/optimal solution) that achieves the minimum value of f
over Rn

θ? = argmin
θ∈Rn

f(θ).

Clearly, f(θ?) = minθ∈Rn f(θ).

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

2

4

6

8

10

12

✓

✓?

CUHK-Shenzhen • SDS Xiao Li 21 / 31



Basic Mathematics

Concepts of Learning

CUHK-Shenzhen • SDS Xiao Li 22 / 31



.

Components of Supervised Learning: Motivation from An Example
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Learning Example: Credit Approval

Task: Learning to predict if one applicant should be approved a credit
card.

Applicant’s info.:

age 25
gender male
salary 100000 RMB

citizenship CN
years in job 2 year

...
...

Question: should we approve credit card to the applicant?

How to automate such a task by using machine learning methods?
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Data: Samples
I Collect a series of historical data

age gender salary citizenship years in job
Applicant 1 2.5 1 10 3 1
Applicant 2 2.8 0 8 6 5
Applicant 3 1.6 0 0 4 0
Applicant 4 2.3 1 8 2 4
Applicant 5 3 0 4 2 1

We have the data matrix (feature matrix) X as

X =


2.5 1 10 3 1
2.8 0 8 6 5
1.6 0 0 4 0
2.3 1 8 2 4
3 0 4 2 1


I Each row x>i is called a sample, representing i-th applicant’s data

I Each column is called a feature, repenting all the applicant’s behavior
about the j-th feature.
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Data: Labels

I Collect the corresponding label

age gender salary citizenship years in job approve
App. 1 2.5 1 10 3 1 +1
App. 2 2.8 0 8 6 5 +1
App. 3 1.6 0 0 4 0 -1
App. 4 2.3 1 8 2 4 +1
App. 5 3 0 4 2 1 -1

We have the label y as

y =


+1
+1
−1
+1
−1


I Each yi represents the label of the i-th applicant.

I Label implies supervision.
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Supervised Learning: Hypothesis/Model

I We have an underlying and unknown hypothesis/model g ∈ H

g : X 7→ Y

where X is the input space (set of all possible inputs), while Y is the
output space (label space).
In our example, g is the target function that maps xi to yi.

I Learn a model f from the hypothesis/model space H based on the
training dataset {(x1, y1), (x2, y2), . . . , (xn, yn)}.
Ideally, f should fully capture the patterns in data, i.e., it
approximates well the target function g

f ≈ g.

I The hypothesis space H is one of the hardest parts to be
pre-determined in a learning process. One typical instance of H is the
set of all possible linear fit to the data (results in linear models), while
another popular choice is nonlinear model (e.g., neural networks).
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Supervised Learning: Hypothesis/Model

Parametrization:

f = fθ ∈ H is often parameterized by the parameters θ

Example:

I In linear regression, fθ(x) = θ
>x is all possible linear fits and θ is the

parameters of the model. A specific θ determines a specific model.

I In deep learning, fθ is the neural network and θ represents weights
(network parameters), respectively.

Two main categories of hypothesis space H:

I Linear
I Linear regression
I Linear classification

I Nonlinear
I Neural networks
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Supervised Learning: Learning Problem and Algorithm

I Given training dataset (x1, y1), . . . , (xn, yn).

I Choose the hypothesis fθ.

I Choose the loss function ` : R→ R.

I Learning/optimization problem

θ̂ = argmin
θ∈Rd

1

n

n∑
i=1

` (fθ(xi), yi) (P)

 Optimization algorithm A is designed to solve (P).

 After learning to obtain θ̂, we get the learned model fθ̂. Then, one can
use the learned fθ̂ to do prediction.
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Supervised Learning: Components

Formalization:

I Target function g : X → Y (underlying credit approval model)

I Training dataset: (x1, y1), . . . , (xn, yn) (historical records)

I Hypothesis space H (learning scope to approximate g)

I Hypothesis/model: fθ (model to be determined)

I Optimization algorithm: A (learning the model from data)
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Supervised Learning: High-level View

training samplesunknown target function
g : X 7! Y (x1, y1), (x2, y2), · · ·

hypothesis/model
f✓ 2 H

A
learning algorithm Learned model

fb✓

Hopefully,
fθ̂ ≈ g

Predict/decision: When a new sample data (test data) x comes, the label
is predicted as:

y ← fθ̂(x).

 Next lecture: Linear classification and linear regression.
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