
DDA5001 Machine Learning
Neural Networks (Part II):

Training Formulation and BP

Xiao Li

School of Data Science
The Chinese University of Hong Kong, Shenzhen

CUHK-Shenzhen • SDS Xiao Li 1 / 21

Recap: One Hidden Layer (Two-Layer) Neural Network

x0

x1

...

xd

x0 = 1
z0

z0 = 1

z1

...

...

...

y1

yK

Input
layer

hidden
layer

output
layer

zM

Use V and W to denote the weight matrices of the first layer and second
layer. NN model can be written as

y = fθ(x) = h(Wσ(V x)).

I The input of the next layer is the output of the previous layer
(z = σ(V x)).

CUHK-Shenzhen • SDS Xiao Li 2 / 21

Recap: Ingredients and Interpretation of Neural Network

Activation function and last layer:

I σ is the activation function.

I Typical choices for σ are sigmoid, ReLU, SiLU, etc.

I The choice of h in the last layer depends on applications, which is to
impose either linear regression or linear classification in the last layer
using the learned feature z.

Interpretation: One can think neural network model as extracting features
by nonlinear network and finally put the extracted feature z into the last
layer for linear regression or linear classification.

Universal approximation power: One hidden layer (two layer) NN can
approximate almost arbitrary target g.

CUHK-Shenzhen • SDS Xiao Li 3 / 21

Training Two Layer Neural Networks

Backpropagation

CUHK-Shenzhen • SDS Xiao Li 4 / 21

Training Neural Networks

I Training data: (x1,y1), . . . , (xn,yn) with xi ∈ Rd and yi ∈ RK

I Neural network model

fθ(x) = h(Wσ(V x)).

I We aim to learn the weight parameters θ = (V ,W) such that

yi ← fθ(xi).

This is a supervised learning problem.

I We can quantify this approximation by choosing a loss function which
we will seek to minimize by picking θ appropriately

CUHK-Shenzhen • SDS Xiao Li 5 / 21

The Learning Problem for Training Neural Networks

Regression: h(t) = t and use squared `2 loss, resulting in

I K = 1

min
θ

{
L(θ) = 1

n

n∑
i=1

(yi − fθ(xi))
2

}
.

I K > 1

min
θ

{
L(θ) = 1

n

n∑
i=1

‖yi − fθ(xi)‖22

}
.

CUHK-Shenzhen • SDS Xiao Li 6 / 21

The Learning Problem for Training Neural Networks

Classification (Binary): K = 1, y = {+1,−1} and h is logistic function.
MLE principle leads to

min
θ

{
L(θ) = − 1

n

n∑
i=1

log(fθ(xi))

}
.

Classification (Multi-class): K > 1, y = (0, . . . , 1, . . . , 0), h is soft-max.
MLE principle leads to

min
θ

{
L(θ) = − 1

n

n∑
i=1

y>i log(fθ(xi))

}
.

Summary: NN learning formulation is the same as least squares or logistic
regression, with the difference being using z = σ(V x) as input.

CUHK-Shenzhen • SDS Xiao Li 7 / 21

Training Neural Networks is Nonconvex Optimization

For example, regression training problem can be written as:

min
θ=(V ,W)

{
L(θ) = 1

n

n∑
i=1

‖yi − h(Wσ(V xi))‖2
}
.

This is a highly nonconvex optimization problem.

Recall that linear supervised learning always gives rise to convex
optimization. The nonconvexity of NN learning comes from learning the
feature z = σ(V x), where V is part of the learnable parameters.

CUHK-Shenzhen • SDS Xiao Li 8 / 21

Training Neural Networks
We put an abstract form of the former learning problems:

min
θ

{
L(θ) = 1

n

n∑
i=1

`i(θ)

}

For different applications (regression or classification), `i has its own form.

I One can apply a gradient-based training algorithm.

I One needs to compute the gradient

∇L(θ) = 1

n

n∑
i=1

∇`i(θ).

I Apply gradient-based training algorithm:

θk+1 = θk − µk∇L(θk).

However... The gradient is not easy to compute and GD training algorithm
might be too optimistic.

CUHK-Shenzhen • SDS Xiao Li 9 / 21

Next: Training Algorithm and its Ingredients

We next dive into the depth of neural network training:

I How to compute the gradient?
 The well-known backpropagation (BP).

I In contemporary applications, n is so large. Applying GD is not
feasible.
 Stochastic gradient descent, Adagrad, and Adam family.

CUHK-Shenzhen • SDS Xiao Li 10 / 21

Training Two Layer Neural Networks

Backpropagation

CUHK-Shenzhen • SDS Xiao Li 11 / 21

Computing The Gradient: Squared `2-Loss as An Example

I Let us take the regression case where we use squared `2 loss as an
example. The conclusion applies to other cases.

I We consider the general case where K > 1. We have

L(θ) = 1

n

n∑
i=1

‖yi − fθ(xi)‖2 =
1

n

n∑
i=1

`i(θ)

where
`i(θ) = ‖yi − fθ(xi)‖22

I Knowing how to take gradient for each `i suffices.

For ease of notation, we will omit the subscription i in `i and denote

`(θ) = ‖y − fθ(x)‖2.

Task: Computing ∇θ`(θ) = (∂`
∂V ,

∂`
∂W).

CUHK-Shenzhen • SDS Xiao Li 12 / 21

Back to The Neural Network Architecture

x0

x1

...

xd

z0

z1

...

...

...

y1

yK

zM

The idea: Computing gradient using chain rule:

I Forward pass: Given an x, compute (using the current parameters V
and W) z = σ(V x), fθ(x) = h(Wz), `(θ) = ‖y − fθ(x)‖22

I Backward pass:
I Second layer: Compute ∂`

∂W
, and compute ∂`

∂z
.

I First layer: Compute ∂`
∂V

= ∂`
∂z

× ∂z
∂V

.

CUHK-Shenzhen • SDS Xiao Li 13 / 21

Deriving The Gradient: Second Layer

I We omit the offset w.l.o.g. i.e., no x0 and z0.

I By definition of gradient, we have

∂`

∂W
=


∂`

∂W (1,1) . . . ∂`
∂W (1,M)

...
. . .

...
∂`

∂W (K,1) . . . ∂`
∂W (K,M)

 ∈ RK×M .

I We focus on one element ∂`
∂W (k,m) of ∂`

∂W .

I With respect to W , we have

`(θ) = ‖y − h(Wz)‖22,

where z = σ(V x) ∈ RM .

CUHK-Shenzhen • SDS Xiao Li 14 / 21

Deriving The Gradient: Second Layer

∂`

∂W (k,m)
=

∂

∂W (k,m)
‖h(Wz)− y‖22

=
∂

∂W (k,m)

K∑
j=1

(
h(w>j z)− y[j]

)2
=

∂

∂W (k,m)

(
h(w>k z)− y[k]

)2
using chain rule→

=
∂
(
h(w>k z)− y[k]

)2
∂
(
h(w>k z)− y[k]

) × ∂
(
h(w>k z)− y[k]

)
∂w>k z

× ∂w>k z

∂W (k,m)

= 2
(
h(w>k z)− y[k]

)
× h′(w>k z)× z[m]

:= δ[k]× z[m],

where w>k ∈ RM is the k-th row of W and we have defined

δ[k] = 2
(
h(w>k z)− y[k]

)
h′(w>k z).

CUHK-Shenzhen • SDS Xiao Li 15 / 21

Deriving The Gradient: Second Layer

Since
∂`

∂W (k,m)
= δ[k]z[m]

Denote

δ =


δ[1]
δ[2]

...
δ[K]

 = 2(h(Wz)− y)� h′(Wz) ∈ RK

where � is the Hadamard (element-wise) product.

We have
∂`

∂W
= δ︸︷︷︸

K×1

z>︸︷︷︸
1×M

∈ RK×M ,

which can be calculated using the current values of W and z.

CUHK-Shenzhen • SDS Xiao Li 16 / 21

Deriving The Gradient: First Layer

x0

x1

...

xd

z0

z1

...

...

...

y1

yK

zM

Recall that the forward pass gives

`(θ) = ‖y − fθ(x)‖22, fθ(x) = h(Wz), z = σ(V x).

We first back-propagate the gradient back to z, and then calculate the
gradient of z w.r.t. V (this is chain rule):

∂`

∂V
=
∂`

∂z
× ∂z

∂V

CUHK-Shenzhen • SDS Xiao Li 17 / 21

Deriving The Gradient: First Layer

To begin with, we back-propagate the gradient back to z.
For an individual node of z:

∂`

∂z[m]
=

∂

∂z[m]
‖h(Wz)− y‖22

=
∂

∂z[m]

K∑
k=1

(
h(w>k z)− y[k]

)2
using chain rule→

=

K∑
k=1

2
(
h(w>k z)− y[k]

)
× h′(w>k z)× wk[m]

=

K∑
k=1

δ[k]wk[m]

Combining the individual nodes of z, we denote

∂`

∂z
=W>δ

CUHK-Shenzhen • SDS Xiao Li 18 / 21

Deriving The Gradient: First Layer

∂`

∂V
=


∂`

∂V (1,1) . . . ∂`
∂V (1,d)

...
. . .

...
∂`

∂V (M,1) . . . ∂`
∂V (M,d)

 ∈ RM×d.

For an individual element of V :

∂`

∂V (m, j)
=

∂`

∂z[m]︸ ︷︷ ︸
gradient from next layer

× ∂z[m]

∂V (m, j)︸ ︷︷ ︸
local gradient

(chain rule)

=
∂`

∂z[m]
× ∂σ(v>mx)

∂V (m, j)
(since z = σ(V x))

=

K∑
k=1

δ[k]wk[m]× σ′(v>mx)× x[j]

Combining the gradients of the individual elements:

∂`

∂V
=
(
(W>δ)� σ′(V x)

)
︸ ︷︷ ︸

M×1

× x>︸︷︷︸
1×d

∈ RM×d

CUHK-Shenzhen • SDS Xiao Li 19 / 21

Summary of Backpropagation: Forward pass
Forward pass: Feed data sample xi into the network, use the current
parameters V and W to compute and store

I V xi

I zi = σ(V xi)

I Wzi

I fθ(xi) = h(Wzi), `i(θ) = ‖yi − fθ(xi)‖22

x0

x1

...

xd

z0

z1

...

...

...

y1

yK

zM
x

V

z = �(V x)

W

CUHK-Shenzhen • SDS Xiao Li 20 / 21

Summary of Backpropagation: Backward pass
Backward pass:
Compute the gradient of the second layer

I δi = 2(h(Wzi)− yi)� h′(Wzi)

I ∂`i
∂W = δiz

>
i

Backpropagate the gradient to zi:

I ∂`
∂zi

=W>δi

Compute the gradient of the first layer:

I ∂`i
∂V =

(
∂`
∂zi
� σ′(V xi)

)
x>i

Thus, backpropagation is an efficient way of computing the gradient of NN
learning problem.

Given the computed gradient, we can apply gradient-based training
algorithm for training NN. Which algorithm should we choose?
Gradient descent or accelerated gradient descent? Next lecture.

CUHK-Shenzhen • SDS Xiao Li 21 / 21

	Training Two Layer Neural Networks
	Backpropagation

