DDA5001 Machine Learning

Neural Networks (Part II):
Training Formulation and BP

Xiao Li

School of Data Science
The Chinese University of Hong Kong, Shenzhen

CUHK-Shenzhen @ SDS Xiao Li 1/21

Recap: One Hidden Layer (Two-Layer) Neural Network

Input hidden
layer layer

output
layer

Use V and W to denote the weight matrices of the first layer and second
layer. NN model can be written as

| y=Jfo@) =h(Wo(Va). |

» The input of the next layer is the output of the previous layer
(z=0(Va)).

CUHK-Shenzhen @ SDS Xiao Li 2/21

Recap: Ingredients and Interpretation of Neural Network

Activation function and last layer:
» o is the activation function.
» Typical choices for o are sigmoid, ReLU, SiLU, etc.

» The choice of h in the last layer depends on applications, which is to
impose either linear regression or linear classification in the last layer
using the learned feature z.

Interpretation: One can think neural network model as extracting features
by nonlinear network and finally put the extracted feature z into the last
layer for linear regression or linear classification.

Universal approximation power: One hidden layer (two layer) NN can
approximate almost arbitrary target g.

CUHK-Shenzhen @ SDS Xiao Li 3/21

Training Two Layer Neural Networks

CUHK-Shenzhen @ SDS Xiao Li 4 /21

Training Neural Networks

» Training data: (z1,¥,),---, (%, y,) with ; € R? and y, € RE

» Neural network model

fo(x) = h(Wa(Va)).

> We aim to learn the weight parameters @ = (V, W) such that

Y; < folxi).

This is a supervised learning problem.

» We can quantify this approximation by choosing a loss function which
we will seek to minimize by picking @ appropriately

CUHK-Shenzhen @ SDS Xiao Li 5/21

The Learning Problem for Training Neural Networks

Regression: h(t) =t and use squared ¢5 loss, resulting in

> K=1

> K >1

CUHK-Shenzhen @ SDS

n

mein {E(Q) = %Z(Uv - fe(mv))2}

i=1

rnein {ﬁ(@) = 71121 ly; — fa(%)%}

Xiao Li

6 /21

The Learning Problem for Training Neural Networks

Classification (Binary): K =1,y = {41, —1} and h is logistic function.
MLE principle leads to

. 1 n
min {E(O) = EIOg(fe(mi))}-

Classification (Multi-class): K > 1, y = (0,...,1,...,0), h is soft-max.
MLE principle leads to

min {5(9) = *% ;y? log(fe(wi))}

Summary: NN learning formulation is the same as least squares or logistic
regression, with the difference being using z = o(V'x) as input.

CUHK-Shenzhen @ SDS Xiao Li 7/21

Training Neural Networks is Nonconvex Optimization

For example, regression training problem can be written as:

min {g(@) =y, - h(Wa(Vaci))HQ} .

0=(V,W) P

This is a highly nonconvex optimization problem.

local minimum

global minimum

Recall that linear supervised learning always gives rise to convex
optimization. The nonconvexity of NN learning comes from learning the
feature z = o(Vx), where V' is part of the learnable parameters.

CUHK-Shenzhen @ SDS Xiao Li

8 /21

Training Neural Networks

We put an abstract form of the former learning problems:

For different applications (regression or classification), ¢; has its own form.
» One can apply a gradient-based training algorithm.
» One needs to compute the gradient

1 n
0)=— 4;(9).
VL) = ;v (6)
» Apply gradient-based training algorithm:
9k+1 = Gk - ukVE(Bk)

However... The gradient is not easy to compute and GD training algorithm
might be too optimistic.

CUHK-Shenzhen @ SDS Xiao Li 9/21

Next: Training Algorithm and its Ingredients

We next dive into the depth of neural network training:

» How to compute the gradient?
~+ The well-known

» In contemporary applications, n is so large. Applying GD is not

feasible.

o d

CUHK-Shenzhen @ SDS Xiao Li 10 /21

Backpropagation

CUHK-Shenzhen @ SDS Xiao Li 11 /21

Computing The Gradient: Squared ¢5-Loss as An Example

P Let us take the regression case where we use squared /5 loss as an
example. The conclusion applies to other cases.

» We consider the general case where K > 1. We have
1 s 1
L) = > lly; = fo(xi)|I* = - pRAC)
i=1 i=1

where

0:(8) = lly; — folx:)|3

» Knowing how to take gradient for each /¢; suffices.
For ease of notation, we will omit the subscription i in ¢; and denote

00) = lly — fo(z)||*.

Task: Computing Vel(0) = (55, %).

CUHK-Shenzhen @ SDS Xiao Li 12 /21

Back to The Neural Network Architecture

The idea: Computing gradient using chain rule:

» Forward pass: Given an @, compute (using the current parameters V
and W) z = o(Va), fo(x) = h(W2),40) = |ly — fo(z)]l3
» Backward pass:

[ol4
oW’

» First layer: Compute ;—é =

and compute 2£.

oz
o0 ., oz
oz ov

» Second layer: Compute

CUHK-Shenzhen @ SDS Xiao Li 13 /21

Deriving The Gradient: Second Layer

> We omit the offset w.l.o.g. i.e., no zg and z.
» By definition of gradient, we have

a¢ e :
ow (Ll - ow@,M
or _ : .) c REXM
ow o0 L s
oW (K1) "' OW(K,M)

ot a¢
» We focus on one element OV (o) of =3¢

» With respect to W, we have

U8) = lly — M(W2)|3,

where z = o(Vz) € RM,

CUHK-Shenzhen @ SDS Xiao Li 14 /21

Deriving The Gradient: Second Layer

4

o5

OW (k,m) - 3W(k:,)Hh(WZ) -yl
K
g 2 (B ylil)*
j:1
8W k: m) (h wkz)2 using chain rule —
_ O (hwiz) —ylk)" 0 (h(w[z)—ylk) ~ ow]=
9 (h(w] z) — y[k]) ow] z W (k, m)
— 3 ((w] 2) — ylk]) x K (w] 2) x 2[m]
= d[k] x z[m],

where w] € RM is the k-th row of W and we have defined

5k] = 2 ((w] 2) — y[k]) I (w] 2).

CUHK-Shenzhen @ SDS Xiao Li 15 /21

Deriving The Gradient: Second Layer

Since o0
W hm) 6[k]z[m]
Denote
0[1]
é[2]
o=1| . | =20(Wz)-y)© B (Wz) e RE
SIK]

where © is the Hadamard (element-wise) product.

We have 50
_ T KxM
W 6 z' €R ,
Kx11xM

which can be calculated using the current values of W and z.

CUHK-Shenzhen @ SDS Xiao Li

16 / 21

Deriving The Gradient: First Layer

Recall that the forward pass gives
U0) = lly - fo(@)ll3, fo(x) =h(W2), z=o(Va).
We first back-propagate the gradient back to z, and then calculate the
gradient of z w.r.t. V' (this is chain rule):
ol ol 0z
vV oz oV

CUHK-Shenzhen @ SDS Xiao Li 17 /21

Deriving The Gradient: First Layer

To begin with, we back-propagate the gradient back to z.
For an individual node of z:

ot)

0 & 2
= Z (wy, z) —y[k])” using chain rule —
lia

K
— Z 2 (h(wy, z) — y[k]) x b’ (wy, z) x wi[m]

= slklwxlm]

Combining the individual nodes of z, we denote

or T
— = 1)
0z w

CUHK-Shenzhen @ SDS Xiao Li 18 /21

Deriving The Gradient: First Layer

D VD
V(1,1 s V(l,d
o = : : c RMxd,
ov o0 e
oV (M,1) ' 9V(M,d)
For an individual element of V:
_or ot X _Ozlm] (chain rule)
ov(m,j) 0z[m)| oV(m,j)
gradient from next layer local gradient

o y do (v, x)
~ 9z[m] ~ 9V (m,7)

(sincez = o(Vx))

K
= S[Klwk[m] x o’ (v, @) x z[j]

k=1
Combining the gradients of the individual elements:

Y.
= ((WTé)Qa’(Vw)) x & e RM*
1xd

Mx1

CUHK-Shenzhen @ SDS Xiao Li 19 /21

Summary of Backpropagation: Forward pass

Forward pass: Feed data sample x; into the network, use the current
parameters V' and W to compute and store

> sz
> Z; = a(Va:z-)
> Wz,-

> fo(zi) = h(Wzi), £:i(8) =y, — fo(z:)|3

CUHK-Shenzhen @ SDS Xiao Li 20 /21

Summary of Backpropagation: Backward pass

Backward pass:
Compute the gradient of the second layer

> 5, = 2(h(sz) — yz) ® h’(Wzl)

o _ 5T
> ow = 0iz;

Backpropagate the gradient to z;:
o0 _ T

Compute the gradient of the first layer:
> oL — (a% o a'(Vmi)) x;

Thus, is an efficient way of computing the gradient of NN
learning problem.

Given the computed gradient, we can apply gradient-based training
algorithm for training NN. ~~ Which algorithm should we choose?
Gradient descent or accelerated gradient descent? Next lecture.

CUHK-Shenzhen @ SDS Xiao Li 21 /21

	Training Two Layer Neural Networks
	Backpropagation

