
DDA5001 Machine Learning
Neural Networks (Part I): Model

Xiao Li

School of Data Science
The Chinese University of Hong Kong, Shenzhen

CUHK-Shenzhen • SDS Xiao Li 1 / 20



Neural Network Model

Training Two Layer Neural Networks

CUHK-Shenzhen • SDS Xiao Li 2 / 20



The Linear Models We Studied and Limitations

We have mainly studied linear regression and linear classification.

I Least squares, perception, logistic regression, and SVM. They are all
linear supervised machine learning models.

I Linear model does not perform well on highly non-linearly separable /
regressible data.

Many challenging objectives consist of non-linear structures. One way to
deal with non-linear case is through nonlinear transformation of data,
making the data to be linearly separable in higher dimension.

I Kernel method. However, this method needs to choose the right κ.

Another way is to impose non-linearity in our model fθ(x) (nonlinear in
θ), leading to nonlinear supervised learning model.

I Note that supervised learning model is to use fθ(x) to approximate
the underlying (nonlinear) pattern g.

I One most noticeable model is neural networks due to its universal
approximation power.

CUHK-Shenzhen • SDS Xiao Li 3 / 20



Structure of Neural Network

Neural network structure:

I Originally conceived as models for the brain.

- Nodes are neurons.
- Edges are synapses.

Let’s start with the simplest single layer neural net.

CUHK-Shenzhen • SDS Xiao Li 4 / 20



Single Layer Neural Network

⌃ �

x0

x1

...

xd

✓0

✓1

...

✓d

I Sample x = (x0, . . . , xd) with x0 = 1.
I Parameters θ = (θ0, . . . , θd), called weights.
I σ is called activation function.

This neural network (NN) structure means

fθ(x) = σ

(
d∑

i=0

θixi

)
= σ(θ>x).

CUHK-Shenzhen • SDS Xiao Li 5 / 20



Neural Network As A Generalized Linear Model

⌃ �

x0

x1

...

xd

✓0

✓1

...

✓d

This single layer neural network covers linear models.

I Vanilla linear regression model if σ(t) = t.

I Logistic regression (binary case) if

σ(t) =
1

1 + e−y·t

More generally, neural network can have more than one layer.

CUHK-Shenzhen • SDS Xiao Li 6 / 20



One Hidden Layer (Two-Layer) Neural Network
We generalize neural network to two-layer:

x0

x1

...

xd

x0 = 1
z0

z0 = 1

z1

...

...

...

y1

yK

Input
layer

hidden
layer

output
layer

zM

Model:

zm = σ(v>mx), m = 1, . . . ,M

yk = h(w>k z), k = 1, . . . ,K

CUHK-Shenzhen • SDS Xiao Li 7 / 20



One Hidden Layer Neural Network

Mathematically, this one hidden layer neural network is presented as

zm = σ(v>mx), m = 1, . . . ,M

yk = h(w>k z), k = 1, . . . ,K

The main idea: Use the output of M linear models + possibly nonlinear
transformation σ as the input to another linear model.

I σ is fixed activation function, h depends on tasks.

I What are the unknown parameters?

vm, wk, m = 1, . . . ,M and k = 1, . . . ,K

I What are the dimension of vm and wk?

I How many extra parameters compared to vanilla linear model?

CUHK-Shenzhen • SDS Xiao Li 8 / 20



Neural Network Model in Matrix Form

zm = σ(v>mx), m = 1, . . . ,M.

yk = h(w>k z), k = 1, . . . ,K.

Let us omit the bias term for simplicity and without loss of generality.
Letting V ∈ RM×d denote the matrix having rows v>m and W ∈ RK×M

denote the matrix having rows w>k , we can write this neural net as

z = σ(V x).

y = h(Wz).

One hidden layer NN model can be written compactly

y = fθ(x) = h(Wσ(V x)).

I θ := (V ,W ) contains the network parameters, called weights.

I The input of the next layer is the output of the previous layer
(z = σ(V x)).

CUHK-Shenzhen • SDS Xiao Li 9 / 20



The Ingredients in Typical Neural Networks

I A historically common choice for σ is the logistic / sigmoid function:

σ(t) =
1

1 + e−t
.

t

h(t)

1

I A popular activation function design based on sigmoid is SiLU
(Sigmoid Linear Unit):

σ(t) =
t

1 + e−t
.

I Another popular choice of σ is the ReLU (rectified linear unit):

σ(t) = max(0, t).

CUHK-Shenzhen • SDS Xiao Li 10 / 20



The Ingredients in Typical Neural Networks
The choice of h depends somewhat on the application.

I Regression, we usually use

h(t) = t.

I Logistic regression for binary classification, where
K = 1, y = {+1,−1}

h(t) =
1

1 + e−y·t
.

One can also use SVM model here.

I Multiclass classification

h(tk) =
etk∑K
j=1 e

tj
, tk = w>k z,

which is to let the last layer to be a multi-class logistic regression
classifier.

 h is to impose certain linear model (z as input) at the end of NN.

CUHK-Shenzhen • SDS Xiao Li 11 / 20



The Representation Power of Neural Networks

One natural question would be why consider neural network model for
nonlinear case.

I Supervised learning is to approximate the underlying pattern g. The
target function g is nonlinear in general.

I The following theorem shows a universal approximation power of just
one hidden layer neural networks, which shows that neural networks
can represent any regular function, and thus can approximate any
underlying (possibly nonlinear) g.

Theorem: Universal approximation Power

Let g be a continuous function on a bounded subset K of d-dimensional
space. Then, there exists a one hidden layer neural network fθ with a finite
number of hidden neurons that approximates g arbitrarily well. Namely, for
all sample x ∈ K, we have |fθ(x)− g(x)| < ε for every ε > 0.

CUHK-Shenzhen • SDS Xiao Li 12 / 20



Remarks

I Like kernel methods, neural networks fit a linear model in a nonlinear
feature space.

I Unlike kernel methods, these nonlinear features are learned — i.e.,
output of the hidden layer.

I Interpretation of NN: One can think neural network model as
extracting features by nonlinear network and finally put the extracted
feature z into the last layer for regression or classification. So, the
last layer can be viewed as LS, LR, SVM, etc.
 This is also true for deep learning, i.e., deep neural network model
(later).

I We will see that the training of neural network model involves
nonconvex optimization because of the involved nonlinear structure of
fθ.

CUHK-Shenzhen • SDS Xiao Li 13 / 20



Neural Network Model

Training Two Layer Neural Networks

CUHK-Shenzhen • SDS Xiao Li 14 / 20



Training Neural Networks

I Training data: (x1,y1), . . . , (xn,yn) with xi ∈ Rd and yi ∈ RK

I Neural network model

fθ(x) = h(Wσ(V x)).

I We aim to learn the weight parameters θ = (V ,W ) such that

yi ← fθ(xi).

Thus, this is a supervised learning problem.

I We can quantify this approximation by choosing a loss function which
we will seek to minimize by picking θ appropriately

CUHK-Shenzhen • SDS Xiao Li 15 / 20



The Learning Problem for Training Neural Networks

Regression: h(t) = t and use squared `2 loss, resulting in

I K = 1

min
θ

{
L(θ) = 1

n

n∑
i=1

(yi − fθ(xi))
2

}
I K > 1

min
θ

{
L(θ) = 1

n

n∑
i=1

‖yi − fθ(xi)‖22

}

CUHK-Shenzhen • SDS Xiao Li 16 / 20



The Learning Problem for Training Neural Networks

Classification (Binary): K = 1, y = {+1,−1} and h is logistic function,
and use logistic loss, resulting in

min
θ

{
L(θ) = − 1

n

n∑
i=1

log(fθ(xi))

}

Classification (Multi-class): K > 1, y = (0, . . . , 1, . . . , 0), h is softmax
and use multiple-class logistic loss, resulting in

min
θ

{
L(θ) = − 1

n

n∑
i=1

y>i log(fθ(xi))

}

CUHK-Shenzhen • SDS Xiao Li 17 / 20



Training Neural Networks is Nonconvex Optimization

For example, regression training problem can be written as:

min
θ=(V ,W )

{
L(θ) = 1

n

n∑
i=1

‖yi − h(Wσ(V xi))‖2
}
.

This is a highly nonconvex optimization problem.

CUHK-Shenzhen • SDS Xiao Li 18 / 20



Training Neural Networks
We put an abstract form of the former learning problems:

min
θ

{
L(θ) = 1

n

n∑
i=1

`i(θ)

}

For different applications (regression or classification), `i has its own form.

I One can apply a gradient-based training algorithm.

I One needs to compute the gradient

∇L(θ) = 1

n

n∑
i=1

∇`i(θ).

I Apply gradient-based training algorithm:

θk+1 = θk − µk∇L(θk).

However... The gradient is not easy to compute and GD training algorithm
might be too optimistic.

CUHK-Shenzhen • SDS Xiao Li 19 / 20



Next: Training Algorithm and its Ingredients

Next lectures will dive into the depth of neural network training:

I How to compute the gradient?
 The well-known backpropagation (BP).

I In contemporary applications, n is so large. Applying GD is not
feasible.
 Stochastic gradient descent, Adagrad, and Adam family.

CUHK-Shenzhen • SDS Xiao Li 20 / 20


	Neural Network Model
	Training Two Layer Neural Networks

