
DDA5001 Machine Learning
Unsupervised Learning:

Dimensionality Reduction (PCA) &
Clustering (k-means)

Xiao Li

School of Data Science
The Chinese University of Hong Kong, Shenzhen

CUHK-Shenzhen • SDS Xiao Li 1 / 30



Recap: PCA

PCA modeling:

xi = Aθi + µ

Interpretation: Find the closest k-dimensional data point
x̃i = Aθi = AA>xi to xi (projecting xi onto the k-dimensional subspace
spanned by the columns of A).

Process of applying PCA:

I Remove the mean: xi = xi − µ, where µ = 1
n

∑n
i=1 xi.

I Compute SVD of the data matrix X = UΣV > (recommended) or
eigen decomposition of the covariance matrix S = UΛU>.

I Basis A = [u1, . . . ,uk], principle component θi = A>xi, and
k-dimensional sample is x̃i = Aθi = AA>xi.
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PCA — Continued

Clustering: k-means
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PCA From the Matrix Factorization Perspective

Recall the (first form) PCA (we assume without loss of generality that
µ = 0)

minimize
A>A=I,{θi}

n∑
i=1

‖xi −Aθi‖22.

It can be written in a matrix form:

minimize
A>A=I,Θ

‖X −AΘ‖2F

where A ∈ Rd×k and Θ ∈ Rk×n, and ‖ · ‖F is the Frobenius norm.

I The above problem is also called low-rank matrix factorization.

I Interpretation: Factorize X into two factors’ multiplication, where the
latter is a low-rank matrix.
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PCA From the Matrix Factorization Perspective

Low-rank matrix factorization

minimize
A>A=I,Θ

‖X −AΘ‖2F

I Calculate the SVD of X = UΣV >.

Solution from PCA

I One optimal solution to the above (low-rank) matrix factorization
problem is given by

A = [u1, . . . ,uk], Θ = [σ1v1, . . . , σkvk]>

I It has infinitely many equivalent optimal solutions.

It is a closed-form solution to a nonconvex optimization problem.
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More General Matrix Factorization

We can also remove the orthogonal constraint on A to allow more
flexibility

minimize
A∈Rd×k,Θ∈Rk×n

‖X −AΘ‖2F .

One optimal solution to the above (low-rank) matrix factorization problem
is given by

A = [
√
σ1u1, . . . ,

√
σkuk], Θ = [

√
σ1v1, . . . ,

√
σkvk]>,

and it has infinitely many equivalent optimal solution.

I A nonconvex optimization problem

I Fortunately, closed-form solution exists.
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LoRA: Low-rank Adaptation

In the post-training stage of large models (like large language models), we
often need to learn an incremental to the learned model to incorporate
new knowledge. That is

minimize
∆Θ∈Rm×n

L(Θ̂ + ∆Θ)

Low-rank Adaptation (LoRA) uses the simple idea of PCA. It does not aim
to learn the full ∆Θ, it instead learns a PCA decomposition of ∆Θ.

minimize
A∈Rm×r,B∈Rr×n

L(Θ̂ +AB)

where r � min{m,n}.

I LoRA approach can save computation memory.

I It is now widely utilized in large language models.

I We will use LoRA in our final project.
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Apply PCA to Real Image Dataset
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The ORL Database of Faces

I 40 persons.

I Each has 10 distinct face images.

I Each image is of size 92× 112.

I The images were taken at different times, varying the lighting, facial
expressions (open / closed eyes, smiling / not smiling) and facial
details (glasses / no glasses).
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Form the Data Matrix

vectorize

92x112

I Do the same thing for all the face images, we get

X = [x1, . . . ,xn] ∈ Rd×n,

where d = 10304, n = 10× 40 = 400.
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Apply PCA to X with k = 40

Perform PCA, i.e., solving

minimize
A>A=I,Θ

‖X −AΘ‖2F

We get the extracted features (i,e., A ∈ Rd×k)

where we resize each column of A (of dimension d = 10304) to a 92× 112
image and show it.
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Reconstructing the Face Image

xi ≈ Aθi

I Each face image xi can be interpreted as a linear combination of the
columns in A.

I The importance of each feature is implied in θi.

I xi ∈ Rd (d = 10304 here) has been nicely represented by a
k-dimensional vector Aθi (k = 40 here) — Dimensionality reduction.
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PCA — Continued

Clustering: k-means
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The Unlabeled Samples

I Unlabeled samples.

I Task: Assign data to several groups / clusters.
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Clustering

I This task is very different from classification.
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Clustering: Formal Definition

I Given unlabeled data samples x1, . . . ,xn ∈ Rd.

Clustering: Assign the unlabeled data to disjoint subsets called clusters.
The principle is that points in the same cluster are more similar to each
other than points in different clusters.

A clustering algorithm can be represented by a cluster mapping, which is a
function

C : {1, . . . , n} → {1, . . . , k}

where k is the number of clusters.

Intuition for performing clustering:

I Define certain distance functions to measure similarity.

I Compute pair-wise distances and put a threshold to assign clusters.
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Clustering vs. Classification

I Clustering: Unsupervised, unlabeled data, assign data into clusters
without recognizing them. For example, we just cluster dog and cat
without recognizing whether x is dog or cat.

I Classification: Supervised, labeled data, recognize the given data, i.e.,
tell whether x is dog or cat.

CUHK-Shenzhen • SDS Xiao Li 17 / 30



.

k-means Clustering
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k-means
One natural method for clustering is k-means, which is to cluster by
determining a center of each group.

k-means criterion: Choosing C to minimize

min
C

W (C) =

k∑
j=1

∑
i:C(i)=j

‖xi − µj‖22

where

µj :=
1

nj

∑
i:C(i)=j

xi nj = |{i : C(i) = j}|

I In k-means, the number of clusters k is assumed to be known as a
prior.

Interpretation:
I k-means: Find k means of the k clusters.
I Calculate the squared Euclidean distance (`2-norm) to measure

similarity and dissimilarity.
I Clustering by finding the assignment that provides small within-cluster

distance, i.e., minimizing W (C).
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k-means: Interpretation

I Intuition: Find k balls (due to Euclidean distance) to enclose each
cluster.
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How many possible clusters?

How many cluster maps C do we need to consider?

S(n, k) = # of possible clusterings of n objects into k clusters

=
1

k!

k∑
j=1

(−1)k−jCj
kj

n

where Cj
k = k(k−1)···(k−j+1)

j(j−1)···1 .

Examples:

I S(10, 4) = 34105.

I S(19, 4) ≈ 1010.

Thus, solving exactly a k-means problem is almost impossible.
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Minimizing The k-means Criterion

I No existing (provably) efficient method for solving it.

I It can be solved exactly (by enumerating) in time O
(
ndk+1 log n

)
,

which is exponential time.

I This is completely impractical unless both d and k are extremely
small.

- E.g., d = 2, k = 3 already results in O(n7 logn) solving time.

Minimizing the k-means criterion is a combinatorial optimization problem,
which is NP-hard.

In practice, we resort to iterative, suboptimal algorithms—k-means
algorithm.
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Reformulation of k-means
Recall k-means is to

C? = argmin
C

k∑
j=1

∑
i:C(i)=j

‖xi − µj‖22.

For fixed C
µj = argmin

m

∑
i:C(i)=j

‖xi −m‖22.

Thus, we can write k-means equivalently

C? = argmin
C,{mj}kj=1

k∑
j=1

∑
i:C(i)=j

‖xi −mj‖22.

I We now have two types of decision variables: 1) The clustering map.
2) The means/centers/centroids {mj}.

I This reformulation gives us an alternating minimization framework.
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k-means Algorithm

C? = argmin
C,{mj}kj=1

W (C, {mj}kj=1) :=

k∑
j=1

∑
i:C(i)=j

‖xi −mj‖22

 .

I In the formulation above, we have two types of decision variables.

I Recall that optimization algorithm almost always follows the idea:
Dividing the original problem into a set of simpler subproblems.

I Solving the k-means problem for both the clustering map C and the
centers {mj} is hard. Can we just solve one of them at one time? It
could be much simpler than solving the two variables simultaneously.

Alternating minimization algorithm:

I Fix C, update {mj}kj=1 to minimize W (C, {mj}kj=1).

I Fix {mj}kj=1, update C to minimize W (C, {mj}kj=1).
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k-means Algorithm
Key advantage: Each subproblem can be solved very easily.

Use t to denote the iteration number.
k-means algorithm

I Fix C = C(t), the update of {mj}kj=1 is

m
(t+1)
j =

1

nj

∑
i:C(t)(i)=j

xi, j = 1, . . . , k.

I Fix {mj}kj=1 = {m(t+1)
j }kj=1, the update of C is

C(t+1)(i) = argmin
1≤j≤k

‖xi −m(t+1)
j ‖22, i = 1, . . . , n.

I Iterate the above two steps until convergence.

In the update of C(t+1)(i), each data sample xi is assigned to exactly one
cluster, even though it can assigned to more than one clusters.

See https://www.youtube.com/watch?v=5I3Ei69I40s for an
illustration of the process.
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k-means Algorithm: Properties

I Since each step optimizes W (C) and there only exists finite number of
partitioning, so the algorithm usually converges to a (local) optimum
in finite number of iterations.

I No guarantee for convergence to global optimum.

I Thus, initialization can be important.
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Initialization
The algorithm is typically initialized by setting each mj to be a random
point in the dataset, i.e., random initialization.

However, depending on the initialization, the algorithm can get stuck in a
local minimum.

One can avoid this by:

I Repeating for several random initializations, then check which W (C)
is the smallest (very common choice in practice).

I Initialize by sequentially selecting random points in the dataset, but
with a probability depending on how far the point is from the already
selected mj . This technique leads to the k-means ++.
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Remarks
I k-means algorithm was originally developed at Bell Labs as an

approach to vector quantization in signal processing.

I If we replace the squared `2-norm with the `1-norm distance in the
definition of W (C):

- The center of each region is actually calculated via the median.
- Results in k-medians clustering, which can be more robust.

I If we change the Euclidean squared `2-norm distance to the cosine
similarity, we get the spherical k-means.
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Model Selection for k-means

What is model selection used for? Selecting hyper-parameters.

Sometimes in practice, k is not known as a prior, then it becomes a
hyper-parameter.

Let Wk(C?) be the optimal loss based on # of clusters k.

Suppose the “correct” number of clusters is k?, we expect

I for k < k?, Wk(C?)−Wk−1(C?) will be large.

I for k > k?, Wk(C?)−Wk−1(C?) will be small.

This suggests choosing k to be near the “knee” of the curve.
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Matrix Factorization Perspective for k-means

k-means can also be viewed as a special matrix factorization:

X ≈ BC,

where
B = [m1, . . . ,mk]

and C has exactly one “1” per column, i.e., unit vector.

I Interpretation: Assign each sample, column of X, to one cluster,
represented by the “1”” element in the corresponding column in C.

I Learning problem:

min
B,C

‖X−BC‖2F , subject to C has exactly one “1” per column.

 This is the end of unsupervised learning
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