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Recap: PCA

PCA modeling:

‘ .’Ei:Agi—FM

Interpretation: Find the closest k-dimensional data point
7= A0, = AA"x; to x; (projecting x; onto the k-dimensional subspace
spanned by the columns of A).

Process of applying PCA:
» Remove the mean: x; = ; — p, where pp = %Z?:l ;.
» Compute SVD of the data matrix X = USV " (recommended) or
eigen decomposition of the covariance matrix S = UAU .

» Basis A = [uy,...,ug], principle component 6; = A"z, and
k-dimensional sample is ; = A0, = AA ;.

CUHK-Shenzhen @ SDS Xiao Li 2/30



PCA — Continued
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PCA From the Matrix Factorization Perspective

Recall the (first form) PCA (we assume without loss of generality that
p=0)

n
minimize Z x; — A6,
ATA=1{6,} & I ill

It can be written in a matrix form:

minimize || X — AG)||F
AT A=1,0

where A € R¥>¥ and @ € R¥*", and || - || 7 is the

» The above problem is also called

» Interpretation: Factorize X into two factors' multiplication, where the
latter is a low-rank matrix.
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PCA From the Matrix Factorization Perspective

Low-rank matrix factorization

minimize || X — A®|%
ATA-L®

» Calculate the SVD of X = UXV .
Solution from PCA

» One optimal solution to the above (low-rank) matrix factorization
problem is given by

A=luy,...,ux], O= [alvl,...,akvk]T

» It has infinitely many equivalent optimal solutions.

It is a closed-form solution to a nonconvex optimization problem.
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More General Matrix Factorization

We can also remove the orthogonal constraint on A to allow more
flexibility
minimize || X — A®|%.
AcCRIXk @CRFXn

One optimal solution to the above (low-rank) matrix factorization problem
is given by

A:[\/aulw"»\/auk]v ®:[\/Elvla"'7\/gk,,vk]—r7

and it has infinitely many equivalent optimal solution.
» A nonconvex optimization problem

» Fortunately, closed-form solution exists.
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LoRA: Low-rank Adaptation

In the stage of large models (like large language models), we
often need to learn an incremental to the learned model to incorporate
new knowledge. That is

minimize £(© + A®)
A®ER™m X"

Low-rank Adaptation (LoRA) uses the simple idea of PCA. It does not aim
to learn the full A®, it instead learns a PCA decomposition of A®.

minimize L(© + AB)
AERmX7T BeRrxn

where r < min{m, n}.

» LoRA approach can save computation memory.
» It is now widely utilized in large language models.
> We will use LoRA in our final project.
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Apply PCA to Real Image Dataset
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The ORL Database of Faces

40 persons.

Each has 10 distinct face images.
Each image is of size 92 x 112.

vvyyvyy

The images were taken at different times, varying the lighting, facial
expressions (open / closed eyes, smiling / not smiling) and facial
details (glasses / no glasses).

CUHK-Shenzhen @ SDS Xiao Li 9/30



Form the Data Matrix

wi[l]
wz — c R10304
| x;[92 x 112]

vectorize

92x112

» Do the same thing for all the face images, we get
X =[x1,...,x,] € R,

where d = 10304, n = 10 x 40 = 400.
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Apply PCA to X with k£ = 40

Perform PCA, i.e., solving

m|n|m|ze X — A®|%
AT A=1,

We get the extracted features (i,e., A € RZ¥F)

1 -
q:*-J

where we resize each column of A (of dimension d = 10304) to a 92 x 112
image and show it.
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Reconstructing the Face Image

| xTr; ~ AOZ |

AReRYEEEEE
_ GUfDNREPES

» Each face image x; can be interpreted as a linear combination of the
columns in A.
» The importance of each feature is implied in 6;.

» z; € R? (d = 10304 here) has been nicely represented by a
k-dimensional vector A8; (k = 40 here) — Dimensionality reduction.
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Clustering: k-means
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The Unlabeled Samples

» Unlabeled samples.

> Task: Assign data to several groups / clusters.
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Clustering

» This task is very different from classification.
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Clustering: Formal Definition

» Given unlabeled data samples x4, ..., z, € R%.

Assign the unlabeled data to disjoint subsets called
The principle is that points in the same cluster are more similar to each
other than points in different clusters.

A clustering algorithm can be represented by a cluster mapping, which is a

function
C:{1,...,n}—={1,... )k}

where k is the number of clusters.

Intuition for performing clustering:
» Define certain distance functions to measure similarity.

» Compute pair-wise distances and put a threshold to assign clusters.
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Clustering vs. Classification

> : Unsupervised, unlabeled data, assign data into clusters
without recognizing them. For example, we just cluster dog and cat
without recognizing whether x is dog or cat.

> . Supervised, labeled data, recognize the given data, i.e.,
tell whether x is dog or cat.
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k-means Clustering
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k-means

One natural method for clustering is , Which is to cluster by
determining a center of each group.

k-means criterion: Choosing C to minimize

k
. - 2
i WO =3 3
Jj=14:

i:C(i)=j

where

po= o S w m=licc)=3)

T i:c(i)=j

» In k-means, the number of clusters k is assumed to be known as a

Interpretation:
» k-means: Find k& means of the k clusters.
» Calculate the squared Euclidean distance (¢2-norm) to measure
similarity and dissimilarity.
» Clustering by finding the assignment that provides small within-cluster
distance, i.e., minimizing W(C).
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k-means: Interpretation

» Intuition: Find k balls (due to Euclidean distance) to enclose each
cluster.
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How many possible clusters?

How many cluster maps C do we need to consider?

S(n, k) = # of possible clusterings of n objects into k clusters
1 & :
= 3 (VG
St

i k(k=1)--(k—j+1
where C} = %

Examples:
> 5(10,4) = 34105.
> S(19,4) ~ 100,

Thus, solving exactly a k-means problem is almost impossible.

CUHK-Shenzhen @ SDS Xiao Li 21 / 30



Minimizing The k-means Criterion

> No existing (provably) efficient method for solving it.

dk+1

> It can be solved exactly (by enumerating) in time O (n logn),

which is exponential time.

» This is completely impractical unless both d and k are extremely

small.
- Eg., d=2, k= 3 already results in O(n" logn) solving time.
Minimizing the k-means criterion is a problem,
which is

In practice, we resort to iterative, suboptimal algorithms—k-means
algorithm.
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Reformulation of k-means

Recall k-means is to

_argmlnz Z ll&: — N]”Q

J=14:C(i)=j

For fixed C

p; = argmin Z |z; —m]|3.
™ ic(i)=j

Thus, we can write k-means equivalently
2
C* = argmin Z Z llz; —m;l|5.
CAm;Yioy j=1ic(i)=j

> We now have two types of decision variables: 1) The clustering map.
2) The means/centers/ {m;}.

» This reformulation gives us an framework.
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k-means Algorithm

v

k
C* = argmikn w(c, {mj}?zl) = Z & —myll5
cqmih, J=li:C(i)=j

In the formulation above, we have two types of decision variables.

Recall that optimization algorithm almost always follows the idea:
Dividing the original problem into a set of simpler subproblems.

Solving the k-means problem for both the clustering map C and the

centers {m;} is hard. Can we just solve one of them at one time? It

could be much simpler than solving the two variables simultaneously.
algorithm:

Fix C, update {m;}}_, to minimize W (C, {m;}*_,).

Fix {m;}*_,, update C to minimize W (C, {m;}*_,).
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k-means Algorithm
Key advantage: Each subproblem can be solved very easily.

Use ¢ to denote the iteration number.
k-means algorithm

> Fix C = C, the update of {m;}h_, is

1 1 :
m§t+):F Z T;, j=1,... k.
T e (i)=j
(H_l)} the update of C is

> F|x{m]} 1*{m =1

C ) (4) = argmin ||&; — m(t+1 I3, i=1,...,n

1<j<k
» lterate the above two steps until convergence.

In the update of C(t“)(i), each data sample x; is assigned to exactly one
cluster, even though it can assigned to more than one clusters.
See https://www.youtube.com/watch?v=5I3Ei69I40s for an

illustration of the process.
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https://www.youtube.com/watch?v=5I3Ei69I40s

k-means Algorithm: Properties

» Since each step optimizes W(C) and there only exists finite number of
partitioning, so the algorithm usually converges to a (local) optimum
in finite number of iterations.

» No guarantee for convergence to global optimum.

» Thus, initialization can be important.

CUHK-Shenzhen @ SDS Xiao Li 26 / 30



Initialization
The algorithm is typically initialized by setting each m; to be a random

point in the dataset, i.e.,

However, depending on the initialization, the algorithm can get stuck in a
local minimum.

I —L

One can avoid this by:

> Repeating for several random initializations, then check which W (C)
is the smallest (very common choice in practice).

» Initialize by sequentially selecting random points in the dataset, but
with a probability depending on how far the point is from the already
selected m ;. This technique leads to the
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Remarks

» k-means algorithm was originally developed at Bell Labs as an
approach to in signal processing.

» If we replace the squared ¢5-norm with the ¢1-norm distance in the
definition of W(C):
- The center of each region is actually calculated via the median.
- Results in , which can be more robust.

» If we change the Euclidean squared /5-norm distance to the cosine
similarity, we get the spherical k-means.
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Model Selection for k-means
What is model selection used for? Selecting hyper-parameters.

Sometimes in practice, k is not known as a prior, then it becomes a
hyper-parameter.

Let W (C*) be the optimal loss based on # of clusters k.

Wi (CH]

N

‘]TTT?Q > K

Suppose the “correct” number of clusters is k*, we expect
> for k < k*, Wi (C*) — Wi_1(C*) will be large.
> for k> k*, Wi(C*) — Wi_1(C*) will be small.

This suggests choosing k to be near the “knee” of the curve.
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Matrix Factorization Perspective for k-means

k-means can also be viewed as a special matrix factorization:
X ~ BC,

where
B = [ml,...,mk]

and C has exactly one “1" per column, i.e., unit vector.

» Interpretation: Assign each sample, column of X, to one cluster,
represented by the “1"” element in the corresponding column in C.

» Learning problem:

Iélicljl |X—BC|%, subjectto C has exactly one “1" per column.

~~ This is the end of unsupervised learning
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