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Dimensionality Reduction
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Dimensionality Reduction

» Observe samples x1, ..., x, € R? without labels.

: Find a closest point to @; in a lower dimensional
space, i.e.,

R? > &, — &; € RF,
where k < d.
» Contrary to kernel methods in supervised learning.
The motivation of dimensionality reduction:
» Reducing redundant information.

» Help algorithms to be more computationally efficient (in lower
dimension).

> Preventing overfitting, especially when n < d (data preprocessing for
supervised learning).

Dimensionality reduction is an important unsupervised learning technique.
The main methods for dimensionality reduction are and
. We will focus on the later.
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Principal Component Analysis (PCA)
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Principal Component Analysis

: Find a low-dimensional
approximation of high-dimensional data by minimizing the squared norms
of distances.

PCA modeling of date:

‘ T~ A0+ p

» = c R? is the original sample.

> A=[A,...,A;] € RF with orthogonal columns, i.e., satisfying
AT A =1,. Matrix A is often called

> 0 € R is the

» 4 is the mean of the samples.

Interpretation: x (after removing the mean p) can be approximated by a
k-dimensional point & = A#.
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Second principal component

Principal Component Analysis - lllustration
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The PCA Learning Problem

PCA boils down to

1 n
minimize fZH:I:ifAO,; — 3
w{0;},ATA=I, N Py

» Only samples {x;} are known. Others are unknowns.

> ltisa problem.
» The hard part is to solve for A.
> Given A, finding i and {6;} is easy.
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Solve for 6;

Given A, u

n
mi?iorr}ize Z llx; — A6; — HH%
¢ i=1

Solution:

Why? It is just a standard least square problem with A being
semi-orthogonal.
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Solve for
Suppose given A, setting 0; = AT(aci — ), we have

minimize x, — AA (z; — p) — pl?.
imize 3| (i — 1) — w3

It is equivalent to

miniumize Z (T — AAT)(JH — )3

i=1

It is further equivalent to

miniumize Z(i’iz ) (I—AAT)T(I—- AAT)(z; — ).

i=1

let B=(I-AA")TI-AA")=1-AA".
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Solve for

Take the gradient with respect to p gives

V= QZB(:I:Z' — ).
i=1

Set the gradient to zero yields one solution

1 n
i=1
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Solve for A

It remains to solve
n
minimize Z |z — AAT (x; — p) — p|2
ATA=1 “
=1
» We can assume p = 0 without loss of generality, as we can set

x; = x; — p (removing the mean from the data).

The problem reduces to

n
minimize Z |z — AA" x;||2
ATA=1

This is one form of PCA.
> Interpretation: Find the closest k-dimensional data point AA ' z; to

x; (projecting x; onto the k-dimensional subspace spanned by the

columns of A).
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Derivation of the Second Equivalent PCA Form
Given the PCA formulation

n
C o T, 2
minimize ZH:BI AA x5
i=1
Expanding the objective function yields

n

dollai— AA @3 =) (xi— AA D) (z; — AA T x))

i=1 =1

= (m;mi _22] AA Tz + :ciTAATAATa:i>

i=1

= Z ]z, —x] AA x;.
i=1
We reduce to the second form of PCA

n

n
maximize » x;] AA z; = Z | AT ;3.
ATA=T Pt
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Derivation of the Third Equivalent PCA Form

The second form is further equivalent to

n
maximize E | A" ;|2
ATA=1

n

<= maximize Z trace(A " z;xz] A)

ATA=1 —
<= maximize trace <A—r (Z azm:j) A) .

ATA=I P

Let
S = Zwla:;r =XX" where X =[x,,...,x,] € R*"
i=1

be the . We have the following third form of
PCA

maximize trace (ATSA) .
AT A=I

We use the third form to derive the solution for A. We need to consult a
matrix computation tool called
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Eigenvalue Analysis

: Given matrix S, find a vector u and a scaler \ such
that

Su = \u

» )\ characterizes the behavior of S in u.

» wu is called the , while X is called the

for real PSD matrix

Suppose matrix S € R*¢ is real, symmetric, and positive semidefinite
(PSD), it always admits an eigen decomposition:

S=UAU"
where U € R4 is an orthogonal matrix satisfying U'U = UU " = I

containing eigenvectors and A = diag(Ay,...,A\g) with Ay > ... > ;>0
is a diagonal matrix containing the corresponding eigenvalues.
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Return to The Solution of PCA
Consider the third form of PCA

maximize trace (ATSA) ,
AT A=T

where S = XX '.

» Note that S is constructed from the data matrix X, it is computable.
» Further, S is real and must be PSD (why?).

Thus we apply eigen decomposition to S to obtain
S=UAU".
The PCA problem becomes
maximize trace (ATUAUTA) .

AT A=I
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Return to The Solution of PCA

maximize trace (AT UAUTA)
AT A=I

Let ® = AU € RF*4 it is a semi-orthogonal matrix since #& ' =1
We can rewrite the optimization problem as

d
maximize trace <<I>A<I>T) = maximize trace N b
AT A= AT A=T ; 199

put the trace inside, we have
d

maximize E \id] ¢,
ATA-l o

Fact: This optimization problem has upper bound < Zle Ai. Hence, it

attains its maximum when ¢)Z¢>i =1,1=1,...,k and
¢ ¢; =0,i=k+1,...,d. Thisis achieved by

‘ A=[uy,..., ug ‘

i.e., the first k eigenvectors.
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Process of Computing The PCA
Given samples &1, ..., xz, € R?, without labels.
» Remove the mean
X, = T; — /,l,,

where p = 15" ;.

» Form the empirical covariance matrix from data
n

S = Zmzmj =XXx'.
i=1

» Compute the eigen decomposition of S
S=UAU"
and the PCA solution is given by
A=luy,..., ug.
» Compute principle component and low-dimensional sample
0,=A"z;, & =A0,=AA "z,
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Connection to Singular Value Decomposition

Given any real matrix X € R%*", there exists a 3-tuple (U, X, V) € R¥*4x

R4X™ % R™*™ sych that
X=UxV"',

where U and V are orthogonal and 3 takes the form

.o o, 1=

01> 09 > -+ >0, >0, p=min(d,n).

» o, are called

» u; and v; are called
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PCA via SVD

Recall § = XXT, the eigen decomposition is S = UAUT, and the
solution to the PCA problem is

A= [ul,...,uk]

We can instead compute the SVD of matrix X = UXV ' and we also
have
A=u,... uyl

» Computing PCA via SVD can be more favorable, as it can be more
numerically reliable than eigen decomposition.

» |t might also save computation time as we do not need to compute
S = XX which can be expensive when X is a large matrix.
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PCA via SVD: lllustration

X =UxVv’
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PCA From the Matrix Factorization Perspective

Recall the (first form) PCA (we assume without loss of generality that
p=0)

n
minimize Z x; — A6,
ATA=1{6,} & I ill

It can be written in a matrix form:

minimize || X — AG)||F
AT A=1,0

where A € R¥>¥ and @ € R¥*", and || - || 7 is the

» The above problem is also called

» Interpretation: Factorize X into two factors' multiplication, where the
latter is a low-rank matrix.
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PCA From the Matrix Factorization Perspective

Low-rank matrix factorization

minimize || X — A®|%
ATA-L®

» Calculate the SVD of X = UXV .
Solution from PCA

» One optimal solution to the above (low-rank) matrix factorization
problem is given by

A=luy,...,ux], O= [alvl,...,akvk]T

» It has infinitely many equivalent optimal solutions.

It is a closed-form solution to a nonconvex optimization problem.
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More General Matrix Factorization

We can also remove the orthogonal constraint on A to allow more
flexibility
minimize || X — A®|%.
AcCRIXk @CRFXn

One optimal solution to the above (low-rank) matrix factorization problem
is given by

A:[\/aulw"»\/auk]v ®:[\/Elvla"'7\/gk,,vk]—r7

and it has infinitely many equivalent optimal solution.
» A nonconvex optimization problem

» Fortunately, closed-form solution exists.
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LoRA: Low-rank Adaptation

In the stage of large models (like large language models), we
often need to learn an incremental to the learned model to incorporate
new knowledge. That is

minimize £(© + A®)
A®ER™m X"

Low-rank Adaptation (LoRA) uses the simple idea of PCA. It does not aim
to learn the full A®, it instead learns a PCA decomposition of A®.

minimize L(© + AB)
AERmX7T BeRrxn

where r < min{m, n}.

» LoRA approach can save computation memory.
» It is now widely utilized in large language models.
> We will use LoRA in our final project.
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Apply PCA to Real Image Dataset
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The ORL Database of Faces

40 persons.

Each has 10 distinct face images.
Each image is of size 92 x 112.

vvyyvyy

The images were taken at different times, varying the lighting, facial
expressions (open / closed eyes, smiling / not smiling) and facial
details (glasses / no glasses).
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Form the Data Matrix

wi[l]
wz — c R10304
| x;[92 x 112]

vectorize

92x112

» Do the same thing for all the face images, we get
X =[x1,...,x,] € R,

where d = 10304, n = 10 x 40 = 400.

CUHK-Shenzhen @ SDS Xiao Li 27 /29



Apply PCA to X with k£ = 40

Perform PCA, i.e., solving

m|n|m|ze X — A®|%
AT A=1,

We get the extracted features (i,e., A € RZ¥F)

1 -
q:*-J

where we resize each column of A (of dimension d = 10304) to a 92 x 112
image and show it.
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Application

» Each face image x; can be interpreted as a linear combination of the
columns in A.
» The importance of each feature is implied in 6;.

» z; € RY (d = 10304 here) has been nicely represented by a
k-dimensional vector A@; (k = 40 here) — Dimensionality reduction.

~> Next lecture: Unsupervised learning: Clustering and k-means.
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