

DDA5001 Machine Learning

Unsupervised Learning: Dimensionality Reduction

Xiao Li

School of Data Science
The Chinese University of Hong Kong, Shenzhen

Dimensionality Reduction

Principal Component Analysis (PCA)

Apply PCA to Real Image Dataset

Dimensionality Reduction

- ▶ Observe samples $x_1, \dots, x_n \in \mathbb{R}^d$, without labels.

Dimensionality reduction: Find a **closest** point to x_i in a **lower dimensional space**, i.e.,

$$\mathbb{R}^d \ni x_i \rightarrow \tilde{x}_i \in \mathbb{R}^k,$$

where $k \ll d$.

- ▶ Contrary to kernel methods in supervised learning.

The motivation of dimensionality reduction:

- ▶ Reducing redundant information.
- ▶ Help algorithms to be more computationally efficient (in lower dimension).
- ▶ Preventing overfitting, especially when $n < d$ (data preprocessing for supervised learning).

Dimensionality reduction is an important **unsupervised learning** technique. The main methods for dimensionality reduction are **feature selection** and **feature extraction**. We will focus on the later.

Dimensionality Reduction

Principal Component Analysis (PCA)

Apply PCA to Real Image Dataset

Principal Component Analysis

Principal component analysis (PCA): Find a low-dimensional approximation of high-dimensional data by minimizing the squared norms of distances.

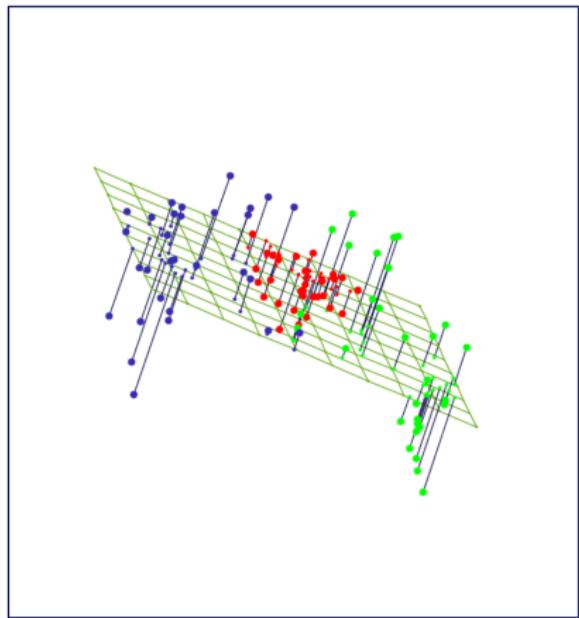
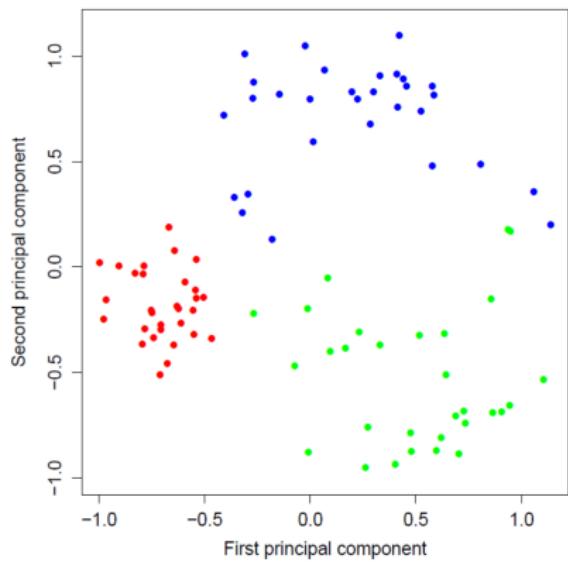
PCA modeling of data:

$$x \approx A\theta + \mu$$

- ▶ $x \in \mathbb{R}^d$ is the original sample.
- ▶ $A = [A_1, \dots, A_k] \in \mathbb{R}^{d \times k}$ with orthogonal columns, i.e., satisfying $A^\top A = I_k$. Matrix A is often called basis.
- ▶ $\theta \in \mathbb{R}^k$ is the principle component.
- ▶ μ is the mean of the samples.

Interpretation: x (after removing the mean μ) can be approximated by a k -dimensional point $\tilde{x} = A\theta$.

Principal Component Analysis - Illustration



The PCA Learning Problem

PCA boils down to

$$\underset{\mu, \{\theta_i\}, A^\top A = I_k}{\text{minimize}} \quad \frac{1}{n} \sum_{i=1}^n \|x_i - A\theta_i - \mu\|_2^2$$

- ▶ Only samples $\{x_i\}$ are known. Others are unknowns.
- ▶ It is a **nonconvex optimization** problem.
- ▶ The hard part is to solve for A .
- ▶ Given A , finding μ and $\{\theta_i\}$ is easy.

Solve for θ_i

Given A, μ

$$\underset{\{\theta_i\}}{\text{minimize}} \sum_{i=1}^n \|x_i - A\theta_i - \mu\|_2^2.$$

Solution:

$$\theta_i = A^\top (x_i - \mu)$$

Why? It is just a standard least square problem with A being semi-orthogonal.

Solve for μ

Suppose given A , setting $\theta_i = A^\top(x_i - \mu)$, we have

$$\underset{\mu}{\text{minimize}} \sum_{i=1}^n \|x_i - AA^\top(x_i - \mu) - \mu\|_2^2.$$

It is equivalent to

$$\underset{\mu}{\text{minimize}} \sum_{i=1}^n \|(\mathbf{I} - AA^\top)(x_i - \mu)\|_2^2.$$

It is further equivalent to

$$\underset{\mu}{\text{minimize}} \sum_{i=1}^n (x_i - \mu)^\top (\mathbf{I} - AA^\top)^\top (\mathbf{I} - AA^\top)(x_i - \mu).$$

Let $B = (\mathbf{I} - AA^\top)^\top (\mathbf{I} - AA^\top) = \mathbf{I} - AA^\top$.

Solve for μ

Take the gradient with respect to μ gives

$$\nabla_{\mu} = 2 \sum_{i=1}^n \mathbf{B}(\mathbf{x}_i - \mu).$$

Set the gradient to zero yields **one** solution

$$\mu = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i.$$

Solve for \mathbf{A}

It remains to solve

$$\underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}}{\text{minimize}} \sum_{i=1}^n \|\mathbf{x}_i - \mathbf{A}\mathbf{A}^\top(\mathbf{x}_i - \boldsymbol{\mu}) - \boldsymbol{\mu}\|_2^2$$

- We can assume $\boldsymbol{\mu} = \mathbf{0}$ without loss of generality, as we can set $\mathbf{x}_i = \mathbf{x}_i - \boldsymbol{\mu}$ (removing the mean from the data).

The problem reduces to

$$\underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}}{\text{minimize}} \sum_{i=1}^n \|\mathbf{x}_i - \mathbf{A}\mathbf{A}^\top \mathbf{x}_i\|_2^2$$

This is one form of PCA.

- **Interpretation:** Find the **closest** k -dimensional data point $\mathbf{A}\mathbf{A}^\top \mathbf{x}_i$ to \mathbf{x}_i (projecting \mathbf{x}_i onto the k -dimensional subspace spanned by the columns of \mathbf{A}).

Derivation of the Second Equivalent PCA Form

Given the PCA formulation

$$\underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}}{\text{minimize}} \sum_{i=1}^n \|\mathbf{x}_i - \mathbf{A}\mathbf{A}^\top \mathbf{x}_i\|_2^2.$$

Expanding the objective function yields

$$\begin{aligned} \sum_{i=1}^n \|\mathbf{x}_i - \mathbf{A}\mathbf{A}^\top \mathbf{x}_i\|_2^2 &= \sum_{i=1}^n (\mathbf{x}_i - \mathbf{A}\mathbf{A}^\top \mathbf{x}_i)^\top (\mathbf{x}_i - \mathbf{A}\mathbf{A}^\top \mathbf{x}_i) \\ &= \sum_{i=1}^n \left(\mathbf{x}_i^\top \mathbf{x}_i - 2\mathbf{x}_i^\top \mathbf{A}\mathbf{A}^\top \mathbf{x}_i + \mathbf{x}_i^\top \mathbf{A}\mathbf{A}^\top \mathbf{A}\mathbf{A}^\top \mathbf{x}_i \right) \\ &= \sum_{i=1}^n \mathbf{x}_i^\top \mathbf{x}_i - \mathbf{x}_i^\top \mathbf{A}\mathbf{A}^\top \mathbf{x}_i. \end{aligned}$$

We reduce to the **second form** of PCA

$$\underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}}{\text{maximize}} \sum_{i=1}^n \mathbf{x}_i^\top \mathbf{A}\mathbf{A}^\top \mathbf{x}_i = \sum_{i=1}^n \|\mathbf{A}^\top \mathbf{x}_i\|_2^2.$$

Derivation of the Third Equivalent PCA Form

The second form is further equivalent to

$$\begin{aligned} & \underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}}{\text{maximize}} \sum_{i=1}^n \|\mathbf{A}^\top \mathbf{x}_i\|_2^2 \\ \iff & \underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}}{\text{maximize}} \sum_{i=1}^n \text{trace}(\mathbf{A}^\top \mathbf{x}_i \mathbf{x}_i^\top \mathbf{A}) \\ \iff & \underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}}{\text{maximize}} \text{trace} \left(\mathbf{A}^\top \left(\sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^\top \right) \mathbf{A} \right). \end{aligned}$$

Let

$$\mathbf{S} = \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^\top = \mathbf{X} \mathbf{X}^\top, \quad \text{where } \mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{d \times n}$$

be the **empirical covariance matrix**. We have the following **third form** of PCA

$$\underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}}{\text{maximize}} \text{trace} \left(\mathbf{A}^\top \mathbf{S} \mathbf{A} \right).$$

We use the third form to derive the solution for \mathbf{A} . We need to consult a matrix computation tool called **eigen decomposition**.

Eigenvalue Analysis

Eigenvalue problem: Given matrix S , find a vector u and a scalar λ such that

$$Su = \lambda u$$

- ▶ λ characterizes the behavior of S in u .
- ▶ u is called the **eigenvector**, while λ is called the **eigenvalue**.

Eigen decomposition for real PSD matrix

Suppose matrix $S \in \mathbb{R}^{d \times d}$ is **real**, **symmetric**, and **positive semidefinite (PSD)**, it always admits an eigen decomposition:

$$S = U \Lambda U^\top$$

where $U \in \mathbb{R}^{d \times d}$ is an orthogonal matrix satisfying $U^\top U = UU^\top = \mathbf{I}$ containing eigenvectors and $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_d)$ with $\lambda_1 \geq \dots \geq \lambda_d \geq 0$ is a diagonal matrix containing the corresponding eigenvalues.

Return to The Solution of PCA

Consider the third form of PCA

$$\underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}}{\text{maximize}} \text{ trace} \left(\mathbf{A}^\top \mathbf{S} \mathbf{A} \right),$$

where $\mathbf{S} = \mathbf{X} \mathbf{X}^\top$.

- ▶ Note that \mathbf{S} is constructed from the data matrix \mathbf{X} , it is computable.
- ▶ Further, \mathbf{S} is real and **must be PSD** (why?).

Thus we apply eigen decomposition to \mathbf{S} to obtain

$$\mathbf{S} = \mathbf{U} \Lambda \mathbf{U}^\top.$$

The PCA problem becomes

$$\underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}}{\text{maximize}} \text{ trace} \left(\mathbf{A}^\top \mathbf{U} \Lambda \mathbf{U}^\top \mathbf{A} \right).$$

Return to The Solution of PCA

$$\underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}}{\text{maximize}} \text{ trace} \left(\mathbf{A}^\top \mathbf{U} \Lambda \mathbf{U}^\top \mathbf{A} \right)$$

Let $\Phi = \mathbf{A}^\top \mathbf{U} \in \mathbb{R}^{k \times d}$, it is a semi-orthogonal matrix since $\Phi \Phi^\top = \mathbf{I}$
We can rewrite the optimization problem as

$$\underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}}{\text{maximize}} \text{ trace} \left(\Phi \Lambda \Phi^\top \right) = \underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}}{\text{maximize}} \text{ trace} \left(\sum_{i=1}^d \lambda_i \phi_i \phi_i^\top \right)$$

put the trace inside, we have

$$\underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}}{\text{maximize}} \sum_{i=1}^d \lambda_i \phi_i^\top \phi_i$$

Fact: This optimization problem has upper bound $\leq \sum_{i=1}^k \lambda_i$. Hence, it attains its maximum when $\phi_i^\top \phi_i = 1, i = 1, \dots, k$ and $\phi_i^\top \phi_i = 0, i = k+1, \dots, d$. This is achieved by

$$\boxed{\mathbf{A} = [\mathbf{u}_1, \dots, \mathbf{u}_k]}$$

i.e., the first k eigenvectors.

Process of Computing The PCA

Given samples $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$, without labels.

- ▶ Remove the mean

$$\mathbf{x}_i = \mathbf{x}_i - \boldsymbol{\mu},$$

where $\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$.

- ▶ Form the empirical covariance matrix from data

$$\mathbf{S} = \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^\top = \mathbf{X} \mathbf{X}^\top.$$

- ▶ Compute the eigen decomposition of \mathbf{S}

$$\mathbf{S} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^\top$$

and the PCA solution is given by

$$\mathbf{A} = [\mathbf{u}_1, \dots, \mathbf{u}_k].$$

- ▶ Compute principle component and low-dimensional sample

$$\boldsymbol{\theta}_i = \mathbf{A}^\top \mathbf{x}_i, \quad \tilde{\mathbf{x}}_i = \mathbf{A} \boldsymbol{\theta}_i = \mathbf{A} \mathbf{A}^\top \mathbf{x}_i.$$

Connection to Singular Value Decomposition

Singular value decomposition (SVD)

Given **any** real matrix $\mathbf{X} \in \mathbb{R}^{d \times n}$, there exists a 3-tuple $(\mathbf{U}, \Sigma, \mathbf{V}) \in \mathbb{R}^{d \times d} \times \mathbb{R}^{d \times n} \times \mathbb{R}^{n \times n}$ such that

$$\mathbf{X} = \mathbf{U} \Sigma \mathbf{V}^\top,$$

where \mathbf{U} and \mathbf{V} are orthogonal and Σ takes the form

$$\Sigma(i, j) = \begin{cases} \sigma_i, & i = j \\ 0, & i \neq j \end{cases}$$

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0, \quad p = \min(d, n).$$

- ▶ σ_i are called **singular value**.
- ▶ \mathbf{u}_i and \mathbf{v}_i are called **left and right singular vectors**.

PCA via SVD

Recall $\mathbf{S} = \mathbf{X}\mathbf{X}^\top$, the eigen decomposition is $\mathbf{S} = \mathbf{U}\Lambda\mathbf{U}^\top$, and the solution to the PCA problem is

$$\mathbf{A} = [\mathbf{u}_1, \dots, \mathbf{u}_k]$$

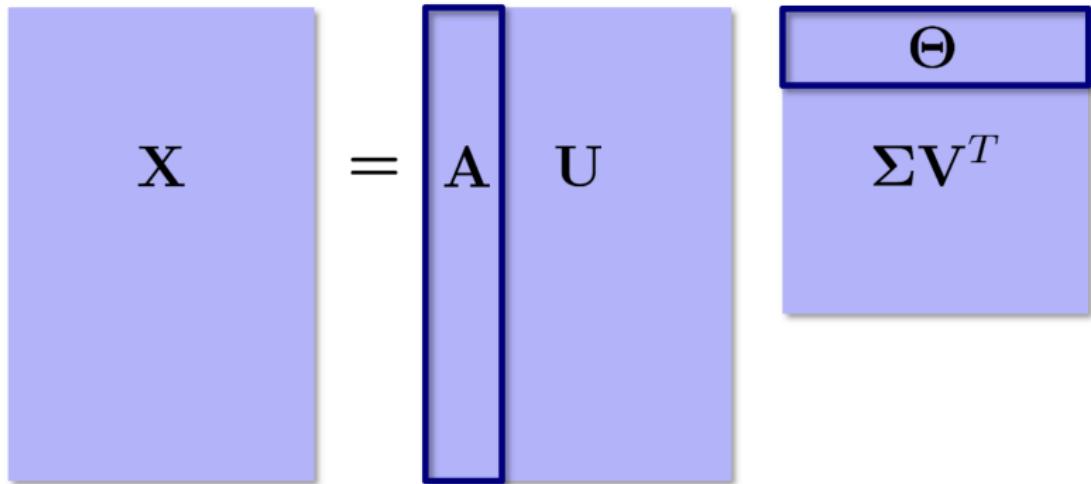
We can instead compute the SVD of matrix $\mathbf{X} = \mathbf{U}\Sigma\mathbf{V}^\top$ and we also have

$$\mathbf{A} = [\mathbf{u}_1, \dots, \mathbf{u}_k].$$

- ▶ Computing PCA via SVD can be more favorable, as it can be more **numerically reliable** than eigen decomposition.
- ▶ It might also **save computation time** as we do not need to compute $\mathbf{S} = \mathbf{X}\mathbf{X}^\top$, which can be expensive when \mathbf{X} is a large matrix.

PCA via SVD: Illustration

$$\mathbf{X} = \mathbf{U}\Sigma\mathbf{V}^T$$



PCA From the Matrix Factorization Perspective

Recall the (first form) PCA (we assume without loss of generality that $\mu = 0$)

$$\underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}, \{\boldsymbol{\theta}_i\}}{\text{minimize}} \sum_{i=1}^n \|\mathbf{x}_i - \mathbf{A}\boldsymbol{\theta}_i\|_2^2.$$

It can be written in a matrix form:

$$\underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}, \boldsymbol{\Theta}}{\text{minimize}} \|\mathbf{X} - \mathbf{A}\boldsymbol{\Theta}\|_F^2$$

where $\mathbf{A} \in \mathbb{R}^{d \times k}$ and $\boldsymbol{\Theta} \in \mathbb{R}^{k \times n}$, and $\|\cdot\|_F$ is the **Frobenius norm**.

- ▶ The above problem is also called **low-rank matrix factorization**.
- ▶ **Interpretation:** Factorize \mathbf{X} into two factors' multiplication, where the latter is a **low-rank matrix**.

PCA From the Matrix Factorization Perspective

Low-rank matrix factorization

$$\underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}, \Theta}{\text{minimize}} \|\mathbf{X} - \mathbf{A}\Theta\|_F^2$$

- ▶ Calculate the SVD of $\mathbf{X} = \mathbf{U}\Sigma\mathbf{V}^\top$.

Solution from PCA

- ▶ One optimal solution to the above (low-rank) matrix factorization problem is given by

$$\mathbf{A} = [\mathbf{u}_1, \dots, \mathbf{u}_k], \quad \Theta = [\sigma_1 \mathbf{v}_1, \dots, \sigma_k \mathbf{v}_k]^\top$$

- ▶ It has infinitely many equivalent optimal solutions.

It is a **closed-form solution** to a nonconvex optimization problem.

More General Matrix Factorization

We can also remove the orthogonal constraint on \mathbf{A} to allow more flexibility

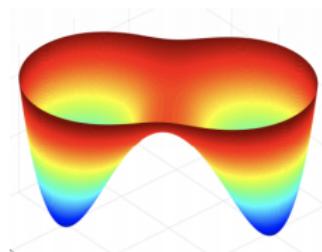
$$\underset{\mathbf{A} \in \mathbb{R}^{d \times k}, \Theta \in \mathbb{R}^{k \times n}}{\text{minimize}} \quad \|\mathbf{X} - \mathbf{A}\Theta\|_F^2.$$

One optimal solution to the above (low-rank) matrix factorization problem is given by

$$\mathbf{A} = [\sqrt{\sigma_1} \mathbf{u}_1, \dots, \sqrt{\sigma_k} \mathbf{u}_k], \quad \Theta = [\sqrt{\sigma_1} \mathbf{v}_1, \dots, \sqrt{\sigma_k} \mathbf{v}_k]^\top,$$

and it has infinitely many equivalent optimal solution.

- ▶ A nonconvex optimization problem



- ▶ Fortunately, closed-form solution exists.

LoRA: Low-rank Adaptation

In the **post-training** stage of large models (like large language models), we often need to learn an incremental to the learned model to incorporate new knowledge. That is

$$\underset{\Delta\Theta \in \mathbb{R}^{m \times n}}{\text{minimize}} \quad \mathcal{L}(\widehat{\Theta} + \Delta\Theta)$$

Low-rank Adaptation (LoRA) uses the simple idea of PCA. It does not aim to learn the full $\Delta\Theta$, it instead learns a **PCA decomposition** of $\Delta\Theta$.

$$\underset{\mathbf{A} \in \mathbb{R}^{m \times r}, \mathbf{B} \in \mathbb{R}^{r \times n}}{\text{minimize}} \quad \mathcal{L}(\widehat{\Theta} + \mathbf{AB})$$

where $r \ll \min\{m, n\}$.

- ▶ LoRA approach can **save computation memory**.
- ▶ It is now widely utilized in large language models.
- ▶ We will use LoRA in our final project.

Dimensionality Reduction

Principal Component Analysis (PCA)

Apply PCA to Real Image Dataset

The ORL Database of Faces

- ▶ 40 persons.
- ▶ Each has 10 distinct face images.
- ▶ Each image is of size 92×112 .
- ▶ The images were taken at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial details (glasses / no glasses).

Form the Data Matrix

vectorize $\xrightarrow{} \mathbf{x}_i = \begin{bmatrix} \mathbf{x}_i[1] \\ \vdots \\ \mathbf{x}_i[92 \times 112] \end{bmatrix} \in \mathbb{R}^{10304}$

- ▶ Do the same thing for all the face images, we get

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{d \times n},$$

where $d = 10304$, $n = 10 \times 40 = 400$.

Apply PCA to \mathbf{X} with $k = 40$

Perform PCA, i.e., solving

$$\underset{\mathbf{A}^\top \mathbf{A} = \mathbf{I}, \Theta}{\text{minimize}} \|\mathbf{X} - \mathbf{A}\Theta\|_F^2$$

We get the **extracted features** (i.e., $\mathbf{A} \in \mathbb{R}^{d \times k}$)

where we resize each column of \mathbf{A} (of dimension $d = 10304$) to a 92×112 image and show it.

Application

$$\mathbf{x}_i = \mathbf{A}\boldsymbol{\theta}_i$$

- ▶ Each face image \mathbf{x}_i can be interpreted as a linear combination of the columns in \mathbf{A} .
- ▶ The importance of each feature is implied in $\boldsymbol{\theta}_i$.
- ▶ $\mathbf{x}_i \in \mathbb{R}^d$ ($d = 10304$ here) has been nicely represented by a k -dimensional vector $\mathbf{A}\boldsymbol{\theta}_i$ ($k = 40$ here) — Dimensionality reduction.

~~ Next lecture: Unsupervised learning: Clustering and k-means.