
DDA5001 Machine Learning
Unsupervised Leanring: Dimensionality Reduction

Xiao Li

School of Data Science
The Chinese University of Hong Kong, Shenzhen

CUHK-Shenzhen • SDS Xiao Li 1 / 29



Dimensionality Reduction

Principal Component Analysis (PCA)

Apply PCA to Real Image Dataset

CUHK-Shenzhen • SDS Xiao Li 2 / 29



Dimensionality Reduction

I Observe samples x1, . . . ,xn ∈ Rd, without labels.

Dimensionality reduction: Find a closest point to xi in a lower dimensional
space, i.e.,

Rd 3 xi → x̃i ∈ Rk,

where k � d.

I Contrary to kernel methods in supervised learning.

The motivation of dimensionality reduction:

I Reducing redundant information.

I Help algorithms to be more computationally efficient (in lower
dimension).

I Preventing overfitting, especially when n < d (data preprocessing for
supervised learning).

Dimensionality reduction is an important unsupervised learning technique.
The main methods for dimensionality reduction are feature selection and
feature extraction. We will focus on the later.
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Principal Component Analysis

Principal component analysis (PCA): Find a low-dimensional
approximation of high-dimensional data by minimizing the squared norms
of distances.

PCA modeling of date:

x ≈ Aθ + µ

I x ∈ Rd is the original sample.

I A = [A1, . . . ,Ak] ∈ Rd×k with orthogonal columns, i.e., satisfying
A>A = Ik. Matrix A is often called basis.

I θ ∈ Rk is the principle component.

I µ is the mean of the samples.

Interpretation: x (after removing the mean µ) can be approximated by a
k-dimensional point x̃ = Aθ.
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Principal Component Analysis - Illustration
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The PCA Learning Problem

PCA boils down to

minimize
µ,{θi},A>A=Ik

1

n

n∑
i=1

‖xi −Aθi − µ‖22

I Only samples {xi} are known. Others are unknowns.

I It is a nonconvex optimization problem.

I The hard part is to solve for A.

I Given A, finding µ and {θi} is easy.
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Solve for θi

Given A,µ

minimize
{θi}

n∑
i=1

‖xi −Aθi − µ‖22.

Solution:
θi = A>(xi − µ)

Why? It is just a standard least square problem with A being
semi-orthogonal.
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Solve for µ

Suppose given A, setting θi = A>(xi − µ), we have

minimize
µ

n∑
i=1

‖xi −AA>(xi − µ)− µ‖22.

It is equivalent to

minimize
µ

n∑
i=1

‖(I−AA>)(xi − µ)‖22.

It is further equivalent to

minimize
µ

n∑
i=1

(xi − µ)>(I−AA>)>(I−AA>)(xi − µ).

Let B = (I−AA>)>(I−AA>) = I−AA>.
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Solve for µ

Take the gradient with respect to µ gives

∇µ = 2

n∑
i=1

B(xi − µ).

Set the gradient to zero yields one solution

µ =
1

n

n∑
i=1

xi.
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Solve for A

It remains to solve

minimize
A>A=I

n∑
i=1

‖xi −AA>(xi − µ)− µ‖22

I We can assume µ = 0 without loss of generality, as we can set
xi = xi − µ (removing the mean from the data).

The problem reduces to

minimize
A>A=I

n∑
i=1

‖xi −AA>xi‖22

This is one form of PCA.

I Interpretation: Find the closest k-dimensional data point AA>xi to
xi (projecting xi onto the k-dimensional subspace spanned by the
columns of A).
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Derivation of the Second Equivalent PCA Form
Given the PCA formulation

minimize
A>A=I

n∑
i=1

‖xi −AA>xi‖22.

Expanding the objective function yields

n∑
i=1

‖xi −AA>xi‖22 =

n∑
i=1

(xi −AA>xi)
>(xi −AA>xi)

=

n∑
i=1

(
x>i xi − 2x>i AA

>xi + x>i AA
>AA>xi

)
=

n∑
i=1

x>i xi − x>i AA
>xi.

We reduce to the second form of PCA

maximize
A>A=I

n∑
i=1

x>i AA
>xi =

n∑
i=1

‖A>xi‖22.
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Derivation of the Third Equivalent PCA Form
The second form is further equivalent to

maximize
A>A=I

n∑
i=1

‖A>xi‖22

⇐⇒maximize
A>A=I

n∑
i=1

trace(A>xix
>
i A)

⇐⇒maximize
A>A=I

trace

(
A>

(
n∑

i=1

xix
>
i

)
A

)
.

Let

S =

n∑
i=1

xix
>
i = XX>, where X = [x1, . . . ,xn] ∈ Rd×n

be the empirical covariance matrix. We have the following third form of
PCA

maximize
A>A=I

trace
(
A>SA

)
.

We use the third form to derive the solution for A. We need to consult a
matrix computation tool called eigen decomposition.
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Eigenvalue Analysis

Eigenvalue problem: Given matrix S, find a vector u and a scaler λ such
that

Su = λu

I λ characterizes the behavior of S in u.

I u is called the eigenvector, while λ is called the eigenvalue.

Eigen decomposition for real PSD matrix

Suppose matrix S ∈ Rd×d is real, symmetric, and positive semidefinite
(PSD), it always admits an eigen decomposition:

S = UΛU>

where U ∈ Rd×d is an orthogonal matrix satisfying U>U = UU> = I
containing eigenvectors and Λ = diag(λ1, . . . , λd) with λ1 ≥ . . . ≥ λd ≥ 0
is a diagonal matrix containing the corresponding eigenvalues.
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Return to The Solution of PCA

Consider the third form of PCA

maximize
A>A=I

trace
(
A>SA

)
,

where S = XX>.

I Note that S is constructed from the data matrix X, it is computable.

I Further, S is real and must be PSD (why?).

Thus we apply eigen decomposition to S to obtain

S = UΛU>.

The PCA problem becomes

maximize
A>A=I

trace
(
A>UΛU>A

)
.
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Return to The Solution of PCA

maximize
A>A=I

trace
(
A>UΛU>A

)
Let Φ = A>U ∈ Rk×d, it is a semi-orthogonal matrix since ΦΦ> = I
We can rewrite the optimization problem as

maximize
A>A=I

trace
(
ΦΛΦ>

)
= maximize

A>A=I
trace

(
d∑

i=1

λiφiφ
>
i

)
put the trace inside, we have

maximize
A>A=I

d∑
i=1

λiφ
>
i φi

Fact: This optimization problem has upper bound ≤
∑k

i=1 λi. Hence, it

attains its maximum when φ>i φi = 1, i = 1, . . . , k and
φ>i φi = 0, i = k + 1, . . . , d . This is achieved by

A = [u1, . . . ,uk]

i.e., the first k eigenvectors.
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Process of Computing The PCA
Given samples x1, . . . ,xn ∈ Rd, without labels.
I Remove the mean

xi = xi − µ,
where µ = 1

n

∑n
i=1 xi.

I Form the empirical covariance matrix from data

S =

n∑
i=1

xix
>
i = XX>.

I Compute the eigen decomposition of S

S = UΛU>

and the PCA solution is given by

A = [u1, . . . ,uk].

I Compute principle component and low-dimensional sample

θi = A>xi, x̃i = Aθi = AA>xi.
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Connection to Singular Value Decomposition

Singular value decomposition (SVD)

Given any real matrixX ∈ Rd×n, there exists a 3-tuple (U ,Σ,V ) ∈ Rd×d×
Rd×n × Rn×n such that

X = UΣV >,

where U and V are orthogonal and Σ takes the form

Σ(i, j) =

{
σi, i = j

0, i 6= j

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, p = min(d, n).

I σi are called singular value.

I ui and vi are called left and right singular vectors.
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PCA via SVD

Recall S = XX>, the eigen decomposition is S = UΛU>, and the
solution to the PCA problem is

A = [u1, . . . ,uk]

We can instead compute the SVD of matrix X = UΣV > and we also
have

A = [u1, . . . ,uk].

I Computing PCA via SVD can be more favorable, as it can be more
numerically reliable than eigen decomposition.

I It might also save computation time as we do not need to compute
S = XX>, which can be expensive when X is a large matrix.
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PCA via SVD: Illustration
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PCA From the Matrix Factorization Perspective

Recall the (first form) PCA (we assume without loss of generality that
µ = 0)

minimize
A>A=I,{θi}

n∑
i=1

‖xi −Aθi‖22.

It can be written in a matrix form:

minimize
A>A=I,Θ

‖X −AΘ‖2F

where A ∈ Rd×k and Θ ∈ Rk×n, and ‖ · ‖F is the Frobenius norm.

I The above problem is also called low-rank matrix factorization.

I Interpretation: Factorize X into two factors’ multiplication, where the
latter is a low-rank matrix.
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PCA From the Matrix Factorization Perspective

Low-rank matrix factorization

minimize
A>A=I,Θ

‖X −AΘ‖2F

I Calculate the SVD of X = UΣV >.

Solution from PCA

I One optimal solution to the above (low-rank) matrix factorization
problem is given by

A = [u1, . . . ,uk], Θ = [σ1v1, . . . , σkvk]>

I It has infinitely many equivalent optimal solutions.

It is a closed-form solution to a nonconvex optimization problem.
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More General Matrix Factorization

We can also remove the orthogonal constraint on A to allow more
flexibility

minimize
A∈Rd×k,Θ∈Rk×n

‖X −AΘ‖2F .

One optimal solution to the above (low-rank) matrix factorization problem
is given by

A = [
√
σ1u1, . . . ,

√
σkuk], Θ = [

√
σ1v1, . . . ,

√
σkvk]>,

and it has infinitely many equivalent optimal solution.

I A nonconvex optimization problem

I Fortunately, closed-form solution exists.
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LoRA: Low-rank Adaptation

In the post-training stage of large models (like large language models), we
often need to learn an incremental to the learned model to incorporate
new knowledge. That is

minimize
∆Θ∈Rm×n

L(Θ̂ + ∆Θ)

Low-rank Adaptation (LoRA) uses the simple idea of PCA. It does not aim
to learn the full ∆Θ, it instead learns a PCA decomposition of ∆Θ.

minimize
A∈Rm×r,B∈Rr×n

L(Θ̂ +AB)

where r � min{m,n}.

I LoRA approach can save computation memory.

I It is now widely utilized in large language models.

I We will use LoRA in our final project.
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The ORL Database of Faces

I 40 persons.

I Each has 10 distinct face images.

I Each image is of size 92× 112.

I The images were taken at different times, varying the lighting, facial
expressions (open / closed eyes, smiling / not smiling) and facial
details (glasses / no glasses).

CUHK-Shenzhen • SDS Xiao Li 26 / 29



Form the Data Matrix

vectorize

92x112

I Do the same thing for all the face images, we get

X = [x1, . . . ,xn] ∈ Rd×n,

where d = 10304, n = 10× 40 = 400.
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Apply PCA to X with k = 40

Perform PCA, i.e., solving

minimize
A>A=I,Θ

‖X −AΘ‖2F

We get the extracted features (i,e., A ∈ Rd×k)

where we resize each column of A (of dimension d = 10304) to a 92× 112
image and show it.
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Application

xi = Aθi

I Each face image xi can be interpreted as a linear combination of the
columns in A.

I The importance of each feature is implied in θi.

I xi ∈ Rd (d = 10304 here) has been nicely represented by a
k-dimensional vector Aθi (k = 40 here) — Dimensionality reduction.

 Next lecture: Unsupervised learning: Clustering and k-means.
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