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Recap: Hard-margin SVM

θ>x+ b = −1
θ>x+ b = 0

θ>x+ b = +1

2‖θ‖
2

Hard-margin SVM:

minimize
θ∈Rd,b∈R

‖θ‖22

subject to yi(θ
>xi + b) ≥ 1, i = 1, . . . , n

Hard-margin SVM can be regarded as: Choose a classifier from all possible
perceptron classifiers that has the largest margin.
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Recap: Regularization View and Modified VC Analysis

I SVM is a linear classifier robust to noise. Such a robustness can be
interpreted as: SVM is better ‘regularized’, which corresponds to the
weight decay term in the objective function.

I SVM maximizes margin, which also helps reduce the generalization
error by using margin ρ rather than number of parameters d+ 1.

Theorem: VC dimension of margin-ρ hyperplanes

Suppose the input space is the ball of radius R in Rd, that is ‖x‖ ≤ R.
Then,

dVC(ρ) ≤
⌈
R2/ρ2

⌉
+ 1.

I Since its VC dimension is at most d+ 1. Thus, we can have

dVC(ρ) ≤ min{
⌈
R2/ρ2

⌉
, d}+ 1.

I The bound suggests that the margin ρ can be used to control the
model complexity. Hence, seeking for a max margin (max ρ) can lead
to better Erout.
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Recap: Soft-margin SVM

Hinge loss:
h(θ;xi, yi) = max(0, 1− yi(θ>xi + b))

I The hinge loss is a relaxation of the perceptron hard constraints.

The soft-margin SVM is to solve

minimize
θ∈Rd,b∈R

1

n

n∑
i=1

max(0, 1− yi(θ>xi + b)) + λ‖θ‖22

I λ > 0 determines the trade-off between increasing the margin and
ensuring that xi lies on the correct side of the margin.

I If the data is linearly separable, then we can choose a sufficiently small
λ to let the soft-margin SVM works the same as hard-margin SVM.

I If data is not linearly separable, soft-margin SVM can still provide a
meaningful classifier.
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Kernel Method
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The Limitation of Linear Model

I We have studied Perceptron, LS, LR, SVM. They are all linear models.

I Sometimes linear model is restrictive.

I Can you find a linear model that classify well these two classes?
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Nonlinear Transform
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The Underlying Idea

I No. We cannot find a linear model in dimension d.

I But, how about in higher dimension p?

Linear model

�
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Nonlinear Transformation to Data

Transformation function:

Φ(x) : Rd → Rp, d < p.

Example in 1d:

Φ(x) =


x
x2

...
xp

 .

Then, try a linear model on the transformed data {Φ(x1), . . . ,Φ(xn)}.
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Generalized Linear Model (Classification Case)

Let us take binary classification as an example. The same idea applies to
regression.

I Original training data: {(xi, yi)}ni=1.

I Transformed training data:

{(Φ(xi), yi)}ni=1.

I It becomes linearly separable even with linear model in θ ∈ Rp

yi = sign
(
Φ(xi)

>θ
)
, ∀i = 1, . . . , n.

 Then applying Perceptron, LR, or SVM to learn θ̂ based on
{(Φ(xi), yi)}ni=1.
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Issues of Nonlinear Transformation

x =


x1

x2

...
xd

 Φ
=⇒ Φ(x) =


Φ(1)(x)
Φ(2)(x)

...
Φ(p)(x)


where p > d.

I Drawback I: We can always find a separating hyperplane, by letting
p > n.

- However, this leads to overfitting.
- Fortunately, this issue can be tackled by using regularization.

I Drawback II: Increasing computational load with increasing p
(especially when p→∞).
 This issue can be solved by kernel method / trick.
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Kernel Method / Trick
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Assumption of Kernel Method

I We will study a trick used to avoid the previous computational issue
for lifting data to higher dimension, i.e., the so-called kernel method.

Assumption on The Solution

We assume there exists α ∈ Rn such that the solution θ̂ =
∑n

j=1 αjxj ,
where {xj}nj=1 are training samples.

I With this assumption, instead of formulating learning problem over
θ ∈ Rd, we can formulate learning problem over α ∈ Rn by replacing
θ =

∑n
j=1 αjxj .

I This assumption is mild as long as n ≥ d, as likely training samples
{xj}nj=1 has d independent samples. In this case, the training data is
easy to represent θ using linear representation.
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Kernel Method / Trick
I In linear model, we always have θ>x. Plugging θ =

∑n
j=1 αjxj into

the linear model gives that many machine learning methods only
involve the data through inner products

x>x′,

where x,x′ are two training samples.

I After applying the nonlinear transform Φ, the inner product becomes

Φ(x)>Φ(x′) ∈ R.

I Kernel method is a trick to evaluate the above inner product without
explicitly calculating Φ(x) and Φ(x′).

Kernel

A function κ : Rd × Rd → R is a kernel for a nonlinear transform Φ if

κ(x,x′) = Φ(x)>Φ(x′), ∀x,x′
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Example of Kernel

x =

[
x1

x2

]
Φ

=⇒ Φ(x) =



1
x2

1

x2
2√

2x1√
2x2√

2x1x2


I The direct way of performing nonlinear transform:

- Compute Φ(x) and Φ(x′).
- Compute Φ(x)>Φ(x′).

I The kernel trick:
κ(x,x′) = (1 + x>x′)2,

which equals to Φ(x)>Φ(x′).
 All the computations remain in dimension d. We never need to go
to dimension p, i.e., compute Φ(x), explicitly.
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Valid Kernels

I In practice, we first define the kernel κ : Rd × Rd → R.

I How can we verify if there exists a Φ such that

κ(x,x′) = Φ(x)>Φ(x′) ?

Mercer’s theorem

κ is a valid kernel if and only if the kernel matrix

K(i, j) = κ(xi,xj)

is positive semidefinite for any set of data {x1, . . . ,xn}.

I In practice, we do not always care if there is a corresponding Φ to the
designed κ.

I Using κ with the best testing performance is often the guideline.
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Example: The Polynomial Kernel

I The polynomial kernel up to degree m is defined by

κ(x,x′) = (1 + x>x′)m.

I We can always find a corresponding Φ : Rd → Rp consists of
polynomials of degrees at most m.

I This can be verified by using binomial theorem.

I More generally, we have the polynomial kernel

κ(x,x′) = (a+ bx>x′)m

to adjust scale.
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Example: Gaussian / RBF kernel

Gaussian / Radial basis function (RBF) kernel:

κ(x,x′) = exp

(
−‖x− x

′‖22
2σ2

)

I The corresponding Φ : Rd → Rp has dimension p =∞.

I This can be seen from Taylor’s theorem. One dimensional example:

κ(x, x′) = exp
(
−(x− x′)2

)
= exp(−x2) exp(x2)

∞∑
k=0

2kxk(x′)k

k!︸ ︷︷ ︸
exp(2xx′)

I Hence, the RBF kernel can intuitively make any data linearly
separable and regressible.
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How to Use Kernel Trick: The Process

I Pick/design a kernel κ.

I Change the trainable parameters θ =
∑n

j=1 αjxj :

θ>xi =

n∑
i=1

αjx
>
j xi

in loss function/decision rule.

I Applying the kernel trick: Replacing x>i xj with κ(xi,xj).
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Learning Problems We Have Studied

General form:

min
θ
L(θ) =

1

n

n∑
i=1

`i(θ).

I Least squares: `i(θ) = (θ>xi − yi)2.

I Logistic regression: `i(θ) = log(1 + exp(−yiθ>xi)).

I SVM: `i(θ) = max(0, 1− yiθ>xi) + λθ>θ.

If we invoke θ =
∑n

j=1 αjxj , we can ’kernalize’ the above learning
problems.

Let us take `2-regularized LS as an example to invoke kernel trick.
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The Kernel Trick for Least Squares with Weight Decay

θ̂ = argmin
θ

n∑
i=1

(θ>xi − yi)2 + λ‖θ‖22

I We replace θ by θ =
∑n

j=1 αjxj .

Kernelization:

α̂ = argmin
α∈Rn

n∑
i=1

 n∑
j=1

αjx
>
j xi − yi

2

+ λ

n∑
i=1

n∑
j=1

αiαjx
>
i xj

kernelize
= argmin

α∈Rn

n∑
i=1

 n∑
j=1

αjκ(xi,xj)− yi

2

+ λ

n∑
i=1

n∑
j=1

αiαjκ(xi,xj)

= argmin
α∈Rn

‖Kα− y‖22 + λα>Kα

Apply Kernel method for test data: With learned α̂ and a new test point
x, we have y = f(x) =

∑n
j=1 α̂jκ(xj ,x), which is non-linear in x.
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Regularization Is Crucial for Kernel Methods

Kernelized problem:

α̂ = argmin
α
‖Kα− y‖22 + λα>Kα

where α ∈ Rn and the kernel matrix K ∈ Rn×n.

I What if λ = 0 ?

I Do you remember p? Φ : Rd → Rp. We often need p > n.

I We are indeed in dimension p.

I Thus, the solution
α̂ = K†y

can overfit any data once p > n.  This is always the case where
Guassian / RBF kernel is used, as p =∞.

I Summary: Kernel method is to use a as complex model as possible
(with number of parameters p), then we use regularization to penalize
it to the right model that does not have severe overfitting.
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Applying Kernel Methods to Calcification

In Φ space: Linear in θ and Φ(x).

Linear model

kernel
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Applying Kernel Methods to Calcification
Apply kernel method for test data: With learned α̂ and a new test point
x, we have y ← f(x) =

∑n
j=1 α̂jκ(xj ,x), which is nonlinear in x.

x1

x2

Kernel method can be viewed as using linear models to learn nonlinear
classifier / regresser by non-linearly transforming the data — An
intermediate method between linear and nonlinear models.

 Next lecture: Unsupervised learning.
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End of Linear Supervised Learning
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