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Recap: Hard-margin SVM

0 x+b=—1

, 0Tz +b=0
%/

O

0 Tx+b=+1

Hard-margin SVM:
minimize ||0||3
OcR? beR
subject to yi(ﬂTmi +b)>1, i=1,...,n
Hard-margin SVM can be regarded as: Choose a classifier from all possible

perceptron classifiers that has the largest margin.
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Recap: Regularization View and Modified VC Analysis

> SVM is a linear classifier robust to noise. Such a robustness can be
interpreted as: SVM is better ‘regularized’, which corresponds to the
weight decay term in the objective function.

> SVM maximizes margin, which also helps reduce the generalization
error by using margin p rather than number of parameters d + 1.

Theorem: VC dimension of margin-p hyperplanes

Suppose the input space is the ball of radius R in R?, that is ||z| < R.

Then,
dvc(p) < [R?/p?] + 1.

» Since its VC dimension is at most d + 1. Thus, we can have
dvc(p) < min{[R?/p*] ,d} + 1.

» The bound suggests that the margin p can be used to control the
model complexity. Hence, seeking for a max margin (max p) can lead
to better Ergyt.
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Recap: Soft-margin SVM

Hinge loss:
h(0;x;,y;) = max(0,1 — yi(OTaci +b))

» The hinge loss is a relaxation of the perceptron hard constraints.

The soft-margin SVM s to solve

OcRd beER N

1 n
minimize — Zmax((), 1—y; (07 x; + b))+ )\|0]|>
i=1

> )\ > 0 determines the trade-off between increasing the margin and
ensuring that x; lies on the correct side of the margin.

» If the data is linearly separable, then we can choose a sufficiently small
A to let the soft-margin SVM works the same as hard-margin SVM.

> If data is not linearly separable, soft-margin SVM can still provide a
meaningful classifier.
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Kernel Method
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The Limitation of Linear Model

» We have studied Perceptron, LS, LR, SVM. They are all linear models.
» Sometimes linear model is restrictive.
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» Can you find a linear model that classify well these two classes?
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Nonlinear Transform
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The Underlying ldea

» No. We cannot find a linear model in dimension d.

» But, how about in higher dimension p?
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Nonlinear Transformation to Data

Transformation function:

®(x) : R - RP, d<p.

Example in 1d:
x
22
d(z) =] .
o
Then, try a linear model on the transformed data {®(x1),...,®(x,)}.
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Generalized Linear Model (Classification Case)
Let us take binary classification as an example. The same idea applies to
regression.
» Original training data: {(z;,y:)}7 ;.
» Transformed training data:

{(@(xi), yi) Hia -

» It becomes linearly separable even with linear model in 8 € R?
y; = sign (@(wi)TH), Vi=1,...,n.

~~ Then applying Perceptron, LR, or SVM to learn 0 based on

{(@(zi), yi) }iey -
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Issues of Nonlinear Transformation

T <I>(1)(:B)
xro ‘I)(Q) xr
= . =2 d(x) = ( )
Ty (I)(p)(w)

where p > d.

» Drawback I: We can always find a separating hyperplane, by letting
p>n.
- However, this leads to overfitting.
- Fortunately, this issue can be tackled by using regularization.
» Drawback II: Increasing computational load with increasing p
(especially when p — o00).
~> This issue can be solved by
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Kernel Method / Trick
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Assumption of Kernel Method

» We will study a trick used to avoid the previous computational issue
for lifting data to higher dimension, i.e., the so-called

Assumption on The Solution

We assume there exists o € R™ such that the solution 0 = Z?:I T,
where {z;}"_; are training samples.

» With this assumption, instead of formulating learning problem over
0 € R?, we can formulate learning problem over o € R™ by replacing
0= Z;‘lzl Q.

» This assumption is mild as long as n > d, as likely training samples
{x;}7_, has d independent samples. In this case, the training data is
easy to represent 8 using linear representation.
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Kernel Method / Trick

» In linear model, we always have 8" . Plugging 6 = Z;’:l o into
the linear model gives that many machine learning methods only
involve the data through inner products

where , ' are two training samples.
> After applying the nonlinear transform @, the inner product becomes
o(x) " ®(x') € R.

» Kernel method is a trick to evaluate the above inner product without
explicitly calculating ®(x) and ®(’).

Kernel
A function x : R? x RY — R is a kernel for a nonlinear transform @ if
k(x,x') = ®(x) ®(x'), Vo, z’
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Example of Kernel
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» The direct way of performing nonlinear transform:
- Compute ®(x) and &(z').
- Compute ®(z) " ®(x').
» The kernel trick:
p(x,x') =14z '),
which equals to ®(z) " ®(z’).
~> All the computations remain in dimension d. We never need to go
to dimension p, i.e., compute ®(x), explicitly.
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Valid Kernels

> In practice, we first define the kernel x : R? x R? — R.
» How can we verify if there exists a ® such that
p(x,x') = &(x) ®(z') ?
Mercer's theorem
k is a valid kernel if and only if the
K (i, j) = k(zi, x;)
is positive semidefinite for any set of data {x1,...,®,}.

» In practice, we do not always care if there is a corresponding ® to the
designed k.

» Using x with the best testing performance is often the guideline.
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Example: The Polynomial Kernel

» The polynomial kernel up to degree m is defined by
ke, ') =14z 2™

» We can always find a corresponding ® : R — RP consists of
polynomials of degrees at most m.

» This can be verified by using binomial theorem.

» More generally, we have the polynomial kernel
k(z,x') = (a + bx x")™

to adjust scale.
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Example: Gaussian / RBF kernel

Gaussian / Radial basis function (RBF) kernel:

]2
/i($,$/) = exp ( Hm € ||2>

202

» The corresponding ® : R? — R? has dimension p = oc.

» This can be seen from Taylor's theorem. One dimensional example:

k(z,2') = exp (—(z — 2')?) = exp(—2?) exp(z?) Z

!
= k!

exp(2zz’)

» Hence, the RBF kernel can intuitively make any data linearly
separable and regressible.
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How to Use Kernel Trick: The Process

> Pick/design a kernel k.

> Change the trainable parameters 8 = 37, ojx;:

n
T T
0 x; = E QjT; T
i=1

in loss function/decision rule.

» Applying the kernel trick: Replacing = z; with x(z;, z;).

CUHK-Shenzhen @ SDS Xiao Li 19 /25



Learning Problems We Have Studied

General form:

min L(0)

I

R

™
=
=

> Least squares: £;(8) = (8 x; — ;)2
> Logistic regression: £;(8) = log(1 + exp(—y;0 " z;)).

> SVM: £;(8) = max(0,1 — 50 "x;) + X0 ' 6.

If we invoke 8 = 37, aj;, we can 'kernalize' the above learning
problems.

Let us take f5-regularized LS as an example to invoke kernel trick.
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The Kernel Trick for Least Squares with Weight Decay

6 = argmin Z(OT%‘ —v:)* + A0]3
)

i=1
> We replace 8 by =37, a;x;.
Kernelization:

n

argmln E E OZJCL‘TZUl

2

n n
i | +A Z Z o ] T

ackr 57 \j=1 i=1 j=1
2
n n
kernelize
= gmin E E ak(xi, ;) — Y +)\§ E oo k(T, )
O‘GR" i=1 \j=1 i=1j=1

= argmin |[Ka — y||2 + \a' K«

acRn

Apply Kernel method for test data: With learned & and a new test point
x, we have y = f(x) = 2?21 a;k(x;, ), which is non-linear in .
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Regularization Is Crucial for Kernel Methods

Kernelized problem:

o = argmin |[Ka — y|j3 + \a' Ka
(e

where o € R" and the kernel matrix K € R*»*™.

>

>
>
>

What if A=07
Do you remember p? & : R? — RP. We often need p > n.
We are indeed in dimension p.
Thus, the solution
a=K'y
can overfit any data once p > n. ~» This is always the case where
Guassian / RBF kernel is used, as p = co.

Summary: Kernel method is to use a as complex model as possible
(with number of parameters p), then we use regularization to penalize
it to the right model that does not have severe overfitting.
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Applying Kernel Methods to Calcification

In ® space: Linear in 8 and ®(x).

° 7 Linear model
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Applying Kernel Methods to Calcification
Apply kernel method for test data: With learned & and a new test point
x, we have y + f(x) = 2?21 a;k(x;, ), which is nonlinear in .

X2

X1

Kernel method can be viewed as using linear models to learn nonlinear
classifier / regresser by non-linearly transforming the data — An
intermediate method between linear and nonlinear models.

~> Next lecture: Unsupervised learning.

CUHK-Shenzhen @ SDS Xiao Li 24 /25



End of Linear Supervised Learning
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