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Recap: Cross Validation

» We need k to be small, so set k = 1.

Stjrain = {(:131, yl)a oo ’4‘:671‘%‘)? ) (xna yn)}

> Learn f/ using SJ;,.

> Validation error: Ervai(f}) = e(fj(x;),y;) == e;.

» Cross validation error:

n
1
Er,, = — E €;.
n -
Jj=1

However, it has too many training rounds. This motivates us to consider
k-folds cross validation, which chooses a batch of data as validation set at
one time rather than exactly one data point.
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Recap: Regularization
Regularization is another weapon for eliminating overfitting, which
amounts to minimizing simultaneously the training error and the
complexity penalty on f, i.e.,

min Bria(f) + Q(f).

» Learning problem for least squares:

0= argmin Ery, := || X6 — y||2,
OcR?

where X € R"*?. If n < d, it corresponds to overfitting.
» One candidate regularizer:

Q(0) = [|]13.

» The /¢5-regularized LS is:

6 = argmin [ X6 —y|3 + A[0]3
OcR?
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Recap: Weight Decay

Weight decay is an important technique in machine learning. It is used
almost everywhere in the training of neural networks.

» Weight decay is proposed as a technique for directly decaying the

parameter (weight) @ during the algorithm process. It has the form:

0k+1 = (1 — )\)Ok — [LVﬁ(Q}C),

where \ defines the rate of the weight decay per step.

> It is easy to see that if 1 — X\ € (0,1), the weight parameter 0 is
decaying at each iteration, thus the name weight decay.

Indeed, it is easy to see that weight decay is equivalent to applying
gradient descent to the ¢5-regularized problem:

min £(0) + )\—/HGHQ with X = é
OcRd 2 29 == ILL

However, this is NOT the case in the Adam algorithm (later); see [1].

[1] Loshchilov, I., & Hutter, F. Decoupled weight decay regularization. ICLR 2019.
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Regularization — Continued
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Regularization as a Cure for Overfitting

X X
» Left: Using fourth-order polynomial without regularization.

» Right: Using fourth-order polynomial with regularization (weight
decay).
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Regularization Technique II: ¢;-regularization / Lasso

An alternative regularizer to ¢,-regularization:

d
Q6) = 6], =) 16,
i=1

which is called least absolute shrinkage and selection operator ( ) or
simply

About ¢1-norm:
» Fact: Promotes sparsity.
» Not differentiable.
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The Lasso Problem

The Lasso problem/¢;-regularized LS:

0 =argmin [|X6 —y|2+ 0],
6eRY

Compare to /5-regularization:
» Lasso promotes sparsity in a more explicit way.

- It explains why Lasso can prevent overfitting when n < d as we indeed
has much less parameters than d (due to sparisty, many zeros in ).

» We can also apply ¢;-regularization to logistic regression.
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The Lasso Problem

The Lasso problem/¢;-regularized LS:

0 =argmin [|X6 —y|2+ 0],
6eRY

Compare to /5-regularization:
» Lasso promotes sparsity in a more explicit way.

- It explains why Lasso can prevent overfitting when n < d as we indeed
has much less parameters than d (due to sparisty, many zeros in ).

» We can also apply ¢;-regularization to logistic regression.

The issue is how to solve the Lasso problem.

Can we apply GD to Lasso? What will be the problem?
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Proximal Gradient Descent
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Algorithm Design Framework Revisited

Suppose the task is mingcpa £(8), we can design an algorithm as

. 1
O = argmin {14(6) = au(6) + 510 - 013}
OcRd Mk

1y is learning rate-like quantity.

» When ¢, () is linear approximation of £L = gradient descent
> When ¢;(0) is L itself = proximal point method

How to design an iterative algorithm for solving the Lasso problem?
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Algorithm Design Framework Revisited

Suppose the task is mingcpa £(8), we can design an algorithm as

. 1
O = argmin {14(6) = au(6) + 510 - 013}
OcRd Mk

1y is learning rate-like quantity.

» When ¢, () is linear approximation of £L = gradient descent
> When ¢;(0) is L itself = proximal point method

How to design an iterative algorithm for solving the Lasso problem?
The idea:

min £(0) = g(6) +(60) = | X6 —yl3 + A6
6cRd —_——  ——
linear approx. keep itself
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Proximal Gradient Descent for The Lasso

Proximal gradient descent for Lasso

Opr1 = argmin {lk(B) = g(61) + Vg(0:) " (6 — 6;) + A||0]1
OcR
dk

1
— |0 — 6|3
o H}

The principle behind:

> Use linear approximation for differentiable part (gradient descent).

> Use the function itself for nondifferentiable part (proximal point
method).

Overall,

proximal point + gradient descent —>
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The Update

Combing the quadratic term and the linear term, we can rewrite the
proximal gradient descent as

1
Or+1 = argmin 5 — 10 — (61 — 11k Vg(0r))II5 + A|6]|1
9cRd 23

The key feature of the subproblem: decomposable.

Let
a =0, — u:Vg(0y)
Denote 0[i] as the i-th coordinate of 8. PGD can be written as

Ok+1 = argmin 7”0 a3 + A6l

e 2

= argmin )% + A6
i ZZ[M ofi])? + AlOl]
d

N R i
:;aer[gﬂggn 3y, 1] = alil)™ + AL,

which is reduced to dx one-dimensional optimization problems.
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The Update

Finally, we have (small exercise)

Oua[i] = argmin ——(8]i] — ali])? + A|0[i]

olier 21k
ali] = Mg, if afi] > Aug
= 0, it — A < afi] < Aug
ofi] + M, if ali] <~

We have closed-form update for PGD used to solve Lasso.
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The Trade-off in Regularization
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Underfitting and Overfitting

Regularization hopes to release the use of complex model and then
penalize it to the right complexity, leading to correct fit of data.

» In practice, choosing a (2 is often a heuristic.

» Finding a perfect € can be as difficult as finding a perfect H as it
depends on the information that, by the very nature of leaning, we do
not have, namely dy.

» Fortunately, some long-standing regularizers work over many
applications such as /- and /-regularizers.

> /5-regularizer (weight decay) is the most widely used one in training

neural networks.

Even in this case, the amount of regularization (controlled by \) leverages
overfitting and underfitting. Too much regularization might lead to
underfitting and vice versa.
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Example: Effect of Different Level of Regularization

Fit a few noisy data generated by quadratic target model, using 10-th
order polynomial with weight decay. We have all three catalysts causing
overfitting.
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Regularization is to Mitigate Noise
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Figure: Left: o represents noise level; Right: Q; is the target model complexity
of the underlying g. Here, the used model complexity to fit is 15.

» The added noise in the left can be regarded as stochastic noise, while
the complexity mismatch in the right can be regarded as deterministic
noise. Both noises have similar effect on overfitting.

» In the noiseless case, we need no regularization. With the increase of
noise, we have worse performance (model starts to fit the noise), and
the the optimal regularization parameter also increase as we need
more regularization to prevent the fitting of more noise.

» Regularization helps by reducing the impact of the noise.
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Regularization and VC Dimension
VC line of reasoning for regularization:

> As A goes up, the learning algorithm changes. However, the dyc
keeps unchanged (since H remains unchanged).

» Indeed, more regularization leads to an ‘effectively small’ model,
which generalize better even H is not changed.

» A heuristic in practice is to use ‘effective VC dimension’ instead of VC
dimension. In linear classifier, the VC dimension is d + 1, equals to
the number of parameters. This interprets very well the ‘effective VC
dimension’, which counts the effective number of parameters.

» This gives a good reasoning that regularization gives better
generalization ability: Though # is not changed, the algorithm tends
to find a f with a simpler complexity:

Erous(fz) < Erin(fg) + generalization of f5 (heuristic)

refined by regularization
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Overfitting — Concluding Remarks
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Theory and Practice
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Theory versus Practice

» Validation and regularization present challenges for the theory of
generalization analysis. It is not straightforward to conduct a rigorous
VC analysis for validation, cross validation, and regularization.

> What is indeed quite effective is to use theory guide practice (what we
have done): Regularization constrains the effective model complexity
of the individual learned f and hence leads to better generalization
(though # does not change), while validation roughly estimates and
bounds Erout(f).

» Learning from data is an empirical task with theoretical
underpinnings. The only way to be convinced what works and what
does not is to implement them on real applications.
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Data Snooping
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Data Snooping

Data Snooping

If a dataset has affected any step in the learning process, its ability to
assess the outcome has been compromised.
» This is by far the most common trap that people fall into in practice.

> |t is extremely important to choose the learned model before seeing
any test data.

» Otherwise, this can lead to serious overfitting.
» It can be very subtle. People may be trapped without awareness.

Many ways to slip up: Reuse of test data set, etc.
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Example: Data Snooping
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Pretraining on the Test Set Is All You Need

Rylan Schacffer

September 19, 2023

Abstract

Inspired by recent work promise of smaller Transformer-based language models
pretrained on carefully curated data, we supercharge such approaches by investing heavily in curating
a novel, high quality, non-synthetic data mixture based solely on evaluation benchmarks. Using our
novel dataset mixture consisting of less than 100 thousand tokens, we pretrain a 1 million parame-
ter transformer-based LLM phi-CTNL (pronounced “fictional”) that achieves perfect results actoss
diverse academic benchmarks, strictly outperforming all known foundation models. phi L also
beats power-law scaling and exhibits a never-before-seen grokking-like ability to aceurately predict
downstream evaluation benchmarks’ canarics.

“/f«/f,- EE

Figure 1: Benchmark results comparing phi-CTNL and other state-of-the-art open-sonrce LLMs. Benchmarks
are broadly classified into three categories: common sense reasoning, language skills, and mul
The classification is meant to be taken loosely. One can see that phi-CTNL achieves perfect scores, smashing
curtent state-of-the-art on all benchmarks. Note that mumbers are from our own evaluation pipeline, and we might
have made them up.

2309.08632v1 [cs.CL] 13 Sep 2023

arXiv

4 Discussion

We introduced phi-CTNL, a 1 million parameter LLM, trained primarily on a specially curated non-
synthetic dataset of 100 thousand tokens. Our findings suggest that phi-CTNL far surpasses all known
models on academic evaluations while using several orders of magnitude fewer parameters and pretraining
tokens. This result challenges the prevailing notion that the capabilities of LLMs at solving academic
benchmarks are solely determined by their parameter scale, suggesting that data quality plays an even
‘more important rale than previously thought.

Disclaime ou haven’t figured out by now that this manusc sal
[Please sce this Twitter thread for more mformation and discussion. It is this author’s belief that
while language model evaluation and benchmarking is hard work, and oftentimes unglamorous, the field
is generally undermined by boastful claims made without serious investigation of data contamination
risks. This author does appreciate work like phi-1 [GZA*23], TinyStories [EL23] and phi-1.5 [LBE23]

that studies how to construct pretraining corpora aimed at sample-cficient lcarming.

Xiao Li

24 /25



Summary of Overfitting

» Complexity of H, noise, number of data points, and complexity of g
affect learning, and may lead to overfitting.

» Validation is a technique for estimating Erq,, giving a way for choose
hyper-parameter to avoid overfitting.

» Regularization is to penalize the individual f learned model
complexity, reducing overfitting issue (caused by stochastic and
deterministic noises).

Next two lectures: SVM and kernel method.
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Appendix
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Proximal Gradient Descent for General Regularizer
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Extension: PGD for General Regularized Problems

Consider general regularized problem

in £(0)=g(0)+ Q(0).
min £(6) = g(0) +2(6)

Define the of function Q as
o1 2

prox,q(a) = argmin —1|0 — |5 + ().
OcRd 2
» For Lasso, Q2(6) = A||€||; and

6111 = prox,, o(0r — 1k Vg (6y)).

PGD for general regularized problem

Ori1 = prox,, o(0x — i Vg(6y)). |

The design principle: The above proximal mapping update has closed-form
solution.
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