
DDA5001 Machine Learning
Overfitting (Part III)

Xiao Li

School of Data Science
The Chinese University of Hong Kong, Shenzhen

CUHK-Shenzhen • SDS Xiao Li 1 / 25



Recap: Cross Validation

I We need k to be small, so set k = 1.

Cross validation: leave one out

I We need k to be small, so set k = 1!

Sj
train = {(x1, y1), . . . , (xj , yj), . . . , (xn, yn)}

I Small k: bad estimate of Erout(f
0), but Erout(f

0) ⇡ Erout( bf)

I Larger k: good estimate of Erout(f
0), but bad Erout(f

0) � Erout( bf)

35 / 35

I Learn f ′j using Sjtrain.

I Validation error: Erval(f
′
j) = e(f ′j(xj), yj) := ej .

I Cross validation error:

Ercv =
1

n

n∑

j=1

ej .

However, it has too many training rounds. This motivates us to consider
k-folds cross validation, which chooses a batch of data as validation set at
one time rather than exactly one data point.

CUHK-Shenzhen • SDS Xiao Li 2 / 25



Recap: Regularization
Regularization is another weapon for eliminating overfitting, which
amounts to minimizing simultaneously the training error and the
complexity penalty on f , i.e.,

min
f∈H

Erin(f) + Ω(f).

I Learning problem for least squares:

θ̂ = argmin
θ∈Rd

Erin := ‖Xθ − y‖22,

where X ∈ Rn×d. If n < d, it corresponds to overfitting.

I One candidate regularizer:

Ω(θ) = ‖θ‖22.
I The `2-regularized LS is:

θ̂ = argmin
θ∈Rd

‖Xθ − y‖22 + λ‖θ‖22

CUHK-Shenzhen • SDS Xiao Li 3 / 25



Recap: Weight Decay
Weight decay is an important technique in machine learning. It is used
almost everywhere in the training of neural networks.

I Weight decay is proposed as a technique for directly decaying the
parameter (weight) θ during the algorithm process. It has the form:

θk+1 = (1− λ)θk − µ∇L(θk),

where λ defines the rate of the weight decay per step.

I It is easy to see that if 1− λ ∈ (0, 1), the weight parameter θ is
decaying at each iteration, thus the name weight decay.

Indeed, it is easy to see that weight decay is equivalent to applying
gradient descent to the `2-regularized problem:

min
θ∈Rd

L(θ) +
λ′

2
‖θ‖22, with λ′ =

λ

µ
.

However, this is NOT the case in the Adam algorithm (later); see [1].

[1] Loshchilov, I., & Hutter, F. Decoupled weight decay regularization. ICLR 2019.

CUHK-Shenzhen • SDS Xiao Li 4 / 25



Regularization — Continued

Overfitting — Concluding Remarks

CUHK-Shenzhen • SDS Xiao Li 5 / 25



Regularization as a Cure for Overfitting

x

y

Data
Target

Fit

x

y

Data
Target

Fit

I Left: Using fourth-order polynomial without regularization.

I Right: Using fourth-order polynomial with regularization (weight
decay).

CUHK-Shenzhen • SDS Xiao Li 6 / 25



Regularization Technique II: `1-regularization / Lasso

An alternative regularizer to `2-regularization:

Ω(θ) = ‖θ‖1 =

d∑

i=1

|θi|,

which is called least absolute shrinkage and selection operator (Lasso) or
simply `1-regularization.

About `1-norm:

I Fact: Promotes sparsity.

I Not differentiable.

|✓|

<latexit sha1_base64="iGufMAPktIB4DkV/25uC32eMzi8=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4xkUcCGzI7DDBhdnad6TUhCz/hxYPGePV3vPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbmd+84lrIyL1gOOY+yEdKNEXjKKVWpMODjnSSbdYcsvuHGSVeBkpQYZat/jV6UUsCblCJqkxbc+N0U+pRsEknxY6ieExZSM64G1LFQ258dP5vVNyZpUe6UfalkIyV39PpDQ0ZhwGtjOkODTL3kz8z2sn2L/2U6HiBLlii0X9RBKMyOx50hOaM5RjSyjTwt5K2JBqytBGVLAheMsvr5LGRdmrlC/vK6XqTRZHHk7gFM7Bgyuowh3UoA4MJDzDK7w5j86L8+58LFpzTjZzDH/gfP4AbkGQPA==</latexit>

✓2

<latexit sha1_base64="M7jdS71/4y6M35kUNJ+PHlLztBc=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHxRHYJRo9ELx4xkUcCK5kdZmHC7Ow602tCCD/hxYPGePV3vPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmZ+64lrI2J1j+OE+xEdKBEKRtFK7S4OOdKHSq9YcsvuHGSVeBkpQYZ6r/jV7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/m907JmVX6JIy1LYVkrv6emNDImHEU2M6I4tAsezPxP6+TYnjlT4RKUuSKLRaFqSQYk9nzpC80ZyjHllCmhb2VsCHVlKGNqGBD8JZfXiXNStmrli/uqqXadRZHHk7gFM7Bg0uowS3UoQEMJDzDK7w5j86L8+58LFpzTjZzDH/gfP4Az/6P1A==</latexit>

CUHK-Shenzhen • SDS Xiao Li 7 / 25



The Lasso Problem

The Lasso problem/`1-regularized LS:

θ̂ = argmin
θ∈Rd

‖Xθ − y‖22 + λ‖θ‖1

Compare to `2-regularization:

I Lasso promotes sparsity in a more explicit way.

- It explains why Lasso can prevent overfitting when n < d as we indeed
has much less parameters than d (due to sparisty, many zeros in θ).

I We can also apply `1-regularization to logistic regression.

The issue is how to solve the Lasso problem.

Can we apply GD to Lasso? What will be the problem?

CUHK-Shenzhen • SDS Xiao Li 8 / 25



The Lasso Problem

The Lasso problem/`1-regularized LS:

θ̂ = argmin
θ∈Rd

‖Xθ − y‖22 + λ‖θ‖1

Compare to `2-regularization:

I Lasso promotes sparsity in a more explicit way.

- It explains why Lasso can prevent overfitting when n < d as we indeed
has much less parameters than d (due to sparisty, many zeros in θ).

I We can also apply `1-regularization to logistic regression.

The issue is how to solve the Lasso problem.

Can we apply GD to Lasso? What will be the problem?

CUHK-Shenzhen • SDS Xiao Li 8 / 25



.

Proximal Gradient Descent

CUHK-Shenzhen • SDS Xiao Li 9 / 25



Algorithm Design Framework Revisited

Suppose the task is minθ∈Rd L(θ), we can design an algorithm as

θk+1 = argmin
θ∈Rd

{
lk(θ) = qk(θ) +

1

2µk
‖θ − θk‖22

}

µk is learning rate-like quantity.

I When qk(θ) is linear approximation of L =⇒ gradient descent

I When qk(θ) is L itself =⇒ proximal point method

How to design an iterative algorithm for solving the Lasso problem?

The idea:

min
θ∈Rd

L(θ) = g(θ) + Ω(θ) = ‖Xθ − y‖22︸ ︷︷ ︸
linear approx.

+ λ‖θ‖1︸ ︷︷ ︸
keep itself

CUHK-Shenzhen • SDS Xiao Li 10 / 25



Algorithm Design Framework Revisited

Suppose the task is minθ∈Rd L(θ), we can design an algorithm as

θk+1 = argmin
θ∈Rd

{
lk(θ) = qk(θ) +

1

2µk
‖θ − θk‖22

}

µk is learning rate-like quantity.

I When qk(θ) is linear approximation of L =⇒ gradient descent

I When qk(θ) is L itself =⇒ proximal point method

How to design an iterative algorithm for solving the Lasso problem?

The idea:

min
θ∈Rd

L(θ) = g(θ) + Ω(θ) = ‖Xθ − y‖22︸ ︷︷ ︸
linear approx.

+ λ‖θ‖1︸ ︷︷ ︸
keep itself

CUHK-Shenzhen • SDS Xiao Li 10 / 25



Proximal Gradient Descent for The Lasso

Proximal gradient descent for Lasso

θk+1 = argmin
θ∈Rd

{
lk(θ) = g(θk) +∇g(θk)>(θ − θk) + λ‖θ‖1︸ ︷︷ ︸

qk

+
1

2µk
‖θ − θk‖22

}

The principle behind:

I Use linear approximation for differentiable part (gradient descent).

I Use the function itself for nondifferentiable part (proximal point
method).

Overall,

proximal point + gradient descent =⇒ proximal gradient descent (PGD)

CUHK-Shenzhen • SDS Xiao Li 11 / 25



The Update
Combing the quadratic term and the linear term, we can rewrite the
proximal gradient descent as

θk+1 = argmin
θ∈Rd

1

2µk
‖θ − (θk − µk∇g(θk))‖22 + λ‖θ‖1

The key feature of the subproblem: decomposable.

Let
α = θk − µk∇g(θk)

Denote θ[i] as the i-th coordinate of θ. PGD can be written as

θk+1 = argmin
θ∈Rd

1

2µk
‖θ −α‖22 + λ‖θ‖1

= argmin
θ∈Rd

d∑

i=1

[
1

2µk
(θ[i]− α[i])2 + λ|θ[i]|

]

=

d∑

i=1

argmin
θ[i]∈R

1

2µk
(θ[i]− α[i])2 + λ|θ[i]|,

which is reduced to d× one-dimensional optimization problems.
CUHK-Shenzhen • SDS Xiao Li 12 / 25



The Update

Finally, we have (small exercise)

θk+1[i] = argmin
θ[i]∈R

1

2µk
(θ[i]− α[i])2 + λ|θ[i]|

=





α[i]− λµk, if α[i] ≥ λµk
0, if − λµk < α[i] < λµk

α[i] + λµk, if α[i] ≤ −λµk

We have closed-form update for PGD used to solve Lasso.

CUHK-Shenzhen • SDS Xiao Li 13 / 25



.

The Trade-off in Regularization

CUHK-Shenzhen • SDS Xiao Li 14 / 25



Underfitting and Overfitting

Regularization hopes to release the use of complex model and then
penalize it to the right complexity, leading to correct fit of data.

I In practice, choosing a Ω is often a heuristic.

I Finding a perfect Ω can be as difficult as finding a perfect H as it
depends on the information that, by the very nature of leaning, we do
not have, namely d∗VC.

I Fortunately, some long-standing regularizers work over many
applications such as `2- and `1-regularizers.

I `2-regularizer (weight decay) is the most widely used one in training
neural networks.

Even in this case, the amount of regularization (controlled by λ) leverages
overfitting and underfitting. Too much regularization might lead to
underfitting and vice versa.

CUHK-Shenzhen • SDS Xiao Li 15 / 25



Example: Effect of Different Level of Regularization
Fit a few noisy data generated by quadratic target model, using 10-th
order polynomial with weight decay. We have all three catalysts causing
overfitting.

λ = 0

λ = 0.1 λ = 0.8 λ = 2 λ = 10

CUHK-Shenzhen • SDS Xiao Li 16 / 25



Regularization is to Mitigate Noise

Figure: Left: σ2 represents noise level; Right: Qf is the target model complexity
of the underlying g. Here, the used model complexity to fit is 15.

I The added noise in the left can be regarded as stochastic noise, while
the complexity mismatch in the right can be regarded as deterministic
noise. Both noises have similar effect on overfitting.

I In the noiseless case, we need no regularization. With the increase of
noise, we have worse performance (model starts to fit the noise), and
the the optimal regularization parameter also increase as we need
more regularization to prevent the fitting of more noise.

I Regularization helps by reducing the impact of the noise.

CUHK-Shenzhen • SDS Xiao Li 17 / 25



Regularization and VC Dimension

VC line of reasoning for regularization:

I As λ goes up, the learning algorithm changes. However, the dVC

keeps unchanged (since H remains unchanged).

I Indeed, more regularization leads to an ‘effectively small’ model,
which generalize better even H is not changed.

I A heuristic in practice is to use ‘effective VC dimension’ instead of VC
dimension. In linear classifier, the VC dimension is d+ 1, equals to
the number of parameters. This interprets very well the ‘effective VC
dimension’, which counts the effective number of parameters.

I This gives a good reasoning that regularization gives better
generalization ability: Though H is not changed, the algorithm tends
to find a f with a simpler complexity:

Erout(fθ̂) ≤ Erin(fθ̂) + generalization of fθ̂︸ ︷︷ ︸
refined by regularization

(heuristic)

CUHK-Shenzhen • SDS Xiao Li 18 / 25



Regularization — Continued

Overfitting — Concluding Remarks

CUHK-Shenzhen • SDS Xiao Li 19 / 25



.

Theory and Practice

CUHK-Shenzhen • SDS Xiao Li 20 / 25



Theory versus Practice

I Validation and regularization present challenges for the theory of
generalization analysis. It is not straightforward to conduct a rigorous
VC analysis for validation, cross validation, and regularization.

I What is indeed quite effective is to use theory guide practice (what we
have done): Regularization constrains the effective model complexity
of the individual learned f and hence leads to better generalization
(though H does not change), while validation roughly estimates and

bounds Erout(f̂).

I Learning from data is an empirical task with theoretical
underpinnings. The only way to be convinced what works and what
does not is to implement them on real applications.

CUHK-Shenzhen • SDS Xiao Li 21 / 25



.

Data Snooping

CUHK-Shenzhen • SDS Xiao Li 22 / 25



Data Snooping

Data Snooping

If a dataset has affected any step in the learning process, its ability to
assess the outcome has been compromised.

I This is by far the most common trap that people fall into in practice.

I It is extremely important to choose the learned model before seeing
any test data.

I Otherwise, this can lead to serious overfitting.

I It can be very subtle. People may be trapped without awareness.

I Many ways to slip up: Reuse of test data set, etc.

CUHK-Shenzhen • SDS Xiao Li 23 / 25



Example: Data Snooping
Pretraining on the Test Set Is All You Need

Rylan Schae↵er

September 19, 2023

Abstract

Inspired by recent work demonstrating the promise of smaller Transformer-based language models
pretrained on carefully curated data, we supercharge such approaches by investing heavily in curating
a novel, high quality, non-synthetic data mixture based solely on evaluation benchmarks. Using our
novel dataset mixture consisting of less than 100 thousand tokens, we pretrain a 1 million parame-
ter transformer-based LLM phi-CTNL (pronounced “fictional”) that achieves perfect results across
diverse academic benchmarks, strictly outperforming all known foundation models. phi-CTNL also
beats power-law scaling and exhibits a never-before-seen grokking-like ability to accurately predict
downstream evaluation benchmarks’ canaries.

Figure 1: Benchmark results comparing phi-CTNL and other state-of-the-art open-source LLMs. Benchmarks
are broadly classified into three categories: common sense reasoning, language skills, and multi-step reasoning.
The classification is meant to be taken loosely. One can see that phi-CTNL achieves perfect scores, smashing
current state-of-the-art on all benchmarks. Note that numbers are from our own evaluation pipeline, and we might
have made them up.

1 Introduction

In this work, we launch an ambitious mission: to achieve state-of-the-art results on widely used aca-
demic benchmarks using solutions that do not involve scale. Inspired by the recently proposed phi-1.5
[LBE+23], which demonstrated that smaller LLMs can achieve high performance if pretrained on carefully
curated data, we demonstrate that we can achieve near-perfect scores on diverse academic benchmarks
using a small (1 million parameter) transformer-based [VSP+17] LLM by pretrained on an extremely
high quality, non-synthetic data mixture. We term our model phi-CTNL (pronounced “fictional”).
Interestingly, phi-CTNL displays two emergent and (to the best of knowledge) novel phenomena:
faster-than-power-law scaling with compute and grokking-like behavior of benchmarks’ canaries.

1

ar
X

iv
:2

30
9.

08
63

2v
1 

 [c
s.C

L]
  1

3 
Se

p 
20

23

CUHK-Shenzhen • SDS Xiao Li 24 / 25



Summary of Overfitting

I Complexity of H, noise, number of data points, and complexity of g
affect learning, and may lead to overfitting.

I Validation is a technique for estimating Erout, giving a way for choose
hyper-parameter to avoid overfitting.

I Regularization is to penalize the individual f learned model
complexity, reducing overfitting issue (caused by stochastic and
deterministic noises).

Next two lectures: SVM and kernel method.

CUHK-Shenzhen • SDS Xiao Li 25 / 25



Appendix

Proximal Gradient Descent for General Regularizer

CUHK-Shenzhen • SDS Xiao Li 1 / 2



Extension: PGD for General Regularized Problems
Consider general regularized problem

min
θ∈Rd

L(θ) = g(θ) + Ω(θ).

Define the proximal mapping of function Ω as

proxαΩ(α) = argmin
θ∈Rd

1

2α
‖θ −α‖22 + Ω(θ).

I For Lasso, Ω(θ) = λ‖θ‖1 and

θk+1 = proxµkΩ(θk − µk∇g(θk)).

PGD for general regularized problem

θk+1 = proxµkΩ(θk − µk∇g(θk)).

The design principle: The above proximal mapping update has closed-form
solution.

CUHK-Shenzhen • SDS Xiao Li 2 / 2


	Regularization — Continued
	Overfitting — Concluding Remarks
	Appendix

