
DDA5001 Machine Learning
Overfitting (Part II)

Xiao Li

School of Data Science
The Chinese University of Hong Kong, Shenzhen

CUHK-Shenzhen • SDS Xiao Li 1 / 22

Recap: Overfitting and its Catalysts

Overfitting

Fitting the data more than is needed

Figure: Color means overfitting level.

Overfitting: Catalysts

I Number of training samples increase, overfitting decreases.

I Noise in data increase, overfitting increases.

I Target model complexity increases, overfitting increases.

CUHK-Shenzhen • SDS Xiao Li 2 / 22

Recap: Validation

Validation technique tries to estimate the out-of-sample error:

Erout(f)︸ ︷︷ ︸
validation estimates this quantity

≤ Erin(f) + overfit penalty.

Validation is used for model selection for avoiding overfitting.

The idea

Split the training set to another ’training set’ and validation set.

Then, use the validation set for estimating Erout.

CUHK-Shenzhen • SDS Xiao Li 3 / 22

Recap: Validation Error and Approximation of Erout

Validation error:

Erval(f
′) =

1

k

k∑

i=1

e(f ′(xi), yi)

Estimate Erout:

Erout(f
′) ≤ Erval(f

′) +O
(

1√
k

)
.

Restoring: After we have used the validation set to estimate the
out-of-sample error, re-train on the whole data set to get f̂ . Using a
reasonable guess from VC analysis, we have

Erout(f̂) ≤ Erout(f
′) ≤ Erval(f

′) +O
(

1√
k

)
.

CUHK-Shenzhen • SDS Xiao Li 4 / 22

Recap: Validation for Model Selection
I Setup: Suppose we have m candidate hypothesis (can also be m

different learning rate choices, etc)

H1, . . . ,Hm.

We can use the validation set to estimate the out-of-sample error by
using Erval(f

′
j) for each f ′j learned from those model spaces.

I Selection: Choose j? such that Erval(f
′
j?) ≤ Erval(f

′
j) for all j.

I Restoring: Train f on the whole set using model space Hj? , get f̂ .

The validation set

Training dataset: S = {(x1, y1), . . . , (xn, yn)}

26 / 26

Validation setTraining set (k)(n−k)

H1, . . . , Hm

f 0
1, . . . , f

0
m

Erval(f
0
1), . . . , Erval(f

0
m)

Pick the best j?

Hj? bf

CUHK-Shenzhen • SDS Xiao Li 5 / 22

Validation — Continued

Regularization

CUHK-Shenzhen • SDS Xiao Li 6 / 22

Validation vs. Testing

I We call this “validation”, but how is it different from “testing”?

I Typically, validation is used to make learning choices, i.e., choosing
hyper-parameters to avoid overfitting.

However,

The test data can never influence the training phase in any way.

If it impacts the learning process, i.e., which final f̂ ∈ H we choose, then
it is no longer a test set,

it becomes a validation set.

CUHK-Shenzhen • SDS Xiao Li 7 / 22

Validation Dilemma

Validation relies on the following chain of reasoning:

Erout(f̂) ⇡ Erout(f
0) ⇡ Erval(f

0)

small k large k

I All we need to do is set k so that it is simultaneously small and
large... A dilemma we face for choosing k.

Is it possible? Yes.

CUHK-Shenzhen • SDS Xiao Li 8 / 22

.

Cross Validation

CUHK-Shenzhen • SDS Xiao Li 9 / 22

Cross Validation: Leave One Out

I We need k to be small, so set k = 1.

Cross validation: leave one out

I We need k to be small, so set k = 1!

Sj
train = {(x1, y1), . . . , (xj , yj), . . . , (xn, yn)}

I Small k: bad estimate of Erout(f
0), but Erout(f

0) ⇡ Erout(bf)

I Larger k: good estimate of Erout(f
0), but bad Erout(f

0) � Erout(bf)

35 / 35

I Learn f ′j using Sjtrain. f ′j should has the almost the same quality as

that of f̂ .

I Validation error: Erval(f
′
j) = e(f ′j(xj), yj) := ej .

I Since k = 1, Erval(f
′
j) is a terrible estimate of Erout(f

′
j) .

The idea: Repeat this for all possible choices of j, and then average them,
giving the cross validation error:

Ercv =
1

n

n∑

j=1

ej .

This approach is called leave-one-out cross validation.

CUHK-Shenzhen • SDS Xiao Li 10 / 22

Cross Validation: Example

1

x

y

2

x
y

3

x

y

E =
1

3
(1 + 2 + 3)

⃝ AML

Ercv =
1

3
(e1 + e2 + e3)

I The hope is that the n validation errors together (i.e, Ercv) is
somehow equivalent to estimating Erout using the whole data set of
size n, while at the same time train f ′j on n− 1 data points.

CUHK-Shenzhen • SDS Xiao Li 11 / 22

Cross Validation for Model Selection

I Setup: Suppose that we have m candidate model spaces H1, . . . ,Hm

(can also be m different learning rate choices, etc).

I We use cross validation to estimate Erout of Hi for i = 1, . . . ,m by
computing Ercv of using Hi.

I Choose i? that has the smallest Ercv over all i. Obtain f̂ = f ′i? , as
there is no need to do restoring (only one data point difference).

What is the potential drawback of leave-one-out cross validation?

I For obtaining each Ercv of using Hi, we need to train n times on
n− 1 samples each.

I In addition, for selecting the model Hi? , we need to repeat it for m
times, requiring around mn rounds of training on n− 1 data points.

I When n is quite large, it can be computationally prohibitive.

CUHK-Shenzhen • SDS Xiao Li 12 / 22

Cross Validation: Leave More Out
k-fold cross validation: Choose a batch of data points for validation rather
than one point.

In k-fold cross validation, k is the number of folds and k′ = n
k is the size

of the validation set

Example: k = 5

S
S4 S5S3S2S1

validation trianing

I Iterate over all 5 choices of validation set and average. So, we only
need to train k times on n− n

k samples each.

I For cross validation with m hypothesis spaces, we need mk rounds of
learning on n− n

k samples each.

Common choice: k = 5, 10.

CUHK-Shenzhen • SDS Xiao Li 13 / 22

Leave More Out: Remarks

I For k-fold cross validation, the estimate depends on the particular
choice of partition.

I When using k-fold cross validation for classification, one should
ensure that each of the sets {Sj} contain training data from each
class in almost the same proportion as in the full data set.

I It is common to form several estimates based on different random
partitions.

CUHK-Shenzhen • SDS Xiao Li 14 / 22

Validation — Continued

Regularization

CUHK-Shenzhen • SDS Xiao Li 15 / 22

Regularization
I Validation is to estimate Erout, and then adjust hyper-parameters.

The regularization is another weapon for eliminating overfitting, which
penalizes the model complexity using penalty Ω(H):

Erout(f) ≤ Erin(f) + Ω(H), ∀f ∈ H

I From VC analysis, it is better to fit the data using the simplest
workable H. However, it is hard to determine such a perfect H.

I One further heuristic extrapolation: How about use a rich/complex
enough H, but choose a ’simple’ (the simplest workable) f from H.
Thus, we can choose a penalty Ω(f) to penalize the complexity of an
individual f ∈ H.

I Instead of minimizing Erin(f) alone, regularization amounts to
minimizing simultaneously the training error and the complexity
penalty, i.e.,

min
f∈H

Erin(f) + Ω(f).

CUHK-Shenzhen • SDS Xiao Li 16 / 22

Least Square Revisited

Learning problem for least squares

θ̂ = argmin
θ∈Rd

‖Xθ − y‖22,

where X ∈ Rn×d.

When the data matrix has full column rank, we have a unique closed-form
solution for LS:

θ̂ =
(
X>X

)−1
X>y

I How about n < d ?

I What is such a case?
Overfitting occurs as d begins to exceed the number of samples n.
We will get zero training error, but large test error.

CUHK-Shenzhen • SDS Xiao Li 17 / 22

Regularization Technique I: `2-regularization

One candidate regularizer:

Ω(θ) = ‖θ‖22.

The `2-regularized LS is:

θ̂ = argmin
θ∈Rd

‖Xθ − y‖22 + λ‖θ‖22

I The most direct way to reduce complexity is to let θ has many zeros
(recall its ‘VC dimension’ is d). But this is a too hard constraint.
`2-regularizer is to make some parameters small (close to zero).

I λ > 0 is the regularization parameter (a hyper-parameter) that
controls the trade-off between underfitting and overfitting.

- Too large λ results in underfitting.
- Too small λ may lead to overfitting.

I Validation technique can be used to choose this hyper-parameter.

I We can apply `2-regularization to logistic regression too.

CUHK-Shenzhen • SDS Xiao Li 18 / 22

Solution of `2-regularization

Let
L(θ) = ‖Xθ − y‖22 + λ‖θ‖22

Expanding the `2-norms yields

L(θ) = (Xθ − y)>(Xθ − y) + λθ>θ

= y>y + θ>(X>X + λI)θ − 2θ>X>y

Taking the gradient

∇L(θ) = 2(X>X + λI)θ − 2X>y

Setting the gradient to zero gives

θ̂ = (X>X + λI)−1X>y

CUHK-Shenzhen • SDS Xiao Li 19 / 22

`2-regularization vs. Vanilla Least Squares
Least squares:

θ̂ = argmin
θ∈Rd

‖Xθ − y‖22

=
(
X>X

)−1
X>y − only for full column rank case

`2-regularization:

θ̂ = argmin
θ∈Rd

‖Xθ − y‖22 + λ‖θ‖22

=
(
X>X + λI

)−1
X>y

The advantage of `2-regularization:

(
X>X + λI

)−1

︸ ︷︷ ︸
always invertible

Algebraically explained why `2-regularization is useful.

CUHK-Shenzhen • SDS Xiao Li 20 / 22

Weight Decay
Weight decay is an important technique in machine learning. It is used
almost everywhere in the training of neural networks.

I Weight decay is proposed as a technique for directly decaying the
parameter (wight) θ during the algorithm process. It has the form:

θk+1 = (1− λ)θk − µ∇L(θk),

where λ defines the rate of the weight decay per step.

I It is easy to see that if 1− λ ∈ (0, 1), the weight parameter θ is
decaying at each iteration, thus the name weight decay.

Indeed, we can verify that weight decay is equivalent to applying gradient
descent to a `2-regularized problem:

min
θ∈Rd

L(θ) +
λ′

2
‖θ‖22, with λ′ =

λ

µ
.

However, this is NOT the case in the Adam algorithm (later); see [1].

[1] Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization. ICLR 2019.

CUHK-Shenzhen • SDS Xiao Li 21 / 22

Regularization as a Cure for Overfitting

x

y
Data

Target
Fit

x

y

Data
Target

Fit

I Left: Using fourth-order polynomial without regularization.

I Right: Using fourth-order polynomial with regularization (weight
decay).

 Next lecture: Another regularization technique using `1-norm and
concluding overfitting section.

CUHK-Shenzhen • SDS Xiao Li 22 / 22

	Validation — Continued
	Regularization

