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Recap: Gradient Descent with Momentum

GD:
θk+1 = θk − µk∇L(θk)

A quite popular technique for accelerating gradient descent method is the
momentum technique:

θk+1 = θk − µk∇L(θk) + βk (θk − θk−1)︸ ︷︷ ︸
momemtum

An equivalent form:

θk+1 = θk −mk

mk = µk∇L(θk) + βkmk−1

I Each iteration takes nearly the same time cost as GD.

I Widely used in practice, notably in Adam algorithm.
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Recap: Nesterov’s Acceleration

GD:
θk+1 = θk − µk∇L(θk)

Another very useful technique to accelerate GD is Nesterov’s accelerated
gradient descent (AGD):

θk+1 = wk − µk∇L(wk)

wk = θk +
k − 1

k + 2
(θk − θk−1)

I Each iteration takes nearly the same time cost as GD.

I Widely used in practice.
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Overfitting

Validation
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What is Overfitting?

Overfitting

Fitting the data more than is needed

overfitting

Erout

Erin

d∗VC

VC dimension, dVC

E
rr
or

I One possible reason: H is more complex than is needed.
I It means fitting the observed data well no longer indicates that we will

get a small out-of-sample error, and may actually lead to the opposite
effect. The main case: Small training error (small Erin) but bad
generalization (large Erout).

CUHK-Shenzhen • SDS Xiao Li 5 / 24



Overfitting: Example

x

y

Data
Target

Fit

I Quadratic target function g.
I 5 data points with noise.
I 4-th order polynomial hypothesis set H

Erin = 0, Erout is huge

I The model uses its additional degrees of freedom to fit non-desirable
pattern in the data (for example, noise), yielding a final learned model
that is inferior.
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Overfitting: Example

Linear: nearly appropriate Highly nonlinear: overfit

I We have linearly separable data plus noise, it becomes slightly
non-linearly separable.

I Linear classifier

Erin 6= 0, Erout is appropriate

I Highly nonlinear hypothesis set H
Erin = 0, Erout is larger
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Overfitting: Catalysts

Figure: Color means the overfitting measure Erout(f10)− Erout(f2).

Overfitting: Catalysts

I Number of training samples increase, overfitting decreases.

I Noise in data increase, overfitting increases.

I Target model complexity increases, overfitting increases.

 Our HW2 will study the Catalysts for overfitting.

I One important approach to avoid overfitting is validation.

I Another one is regularization.
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Overfitting

Validation
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Validation as A Cure for Overfitting

From VC generalization analysis, we have

Erout(f) ≤ Erin(f) + overfit penalty.

I Generalization error is large in the overfitting regime, hence it
becomes the “overfit penalty”.

I The ideal case is to minimize Erout directly, which is, however, not
available.

I Can we turn to estimate the Erout?

Validation technique tries to estimate the out-of-sample error for
eliminating overfitting:

Erout(f)︸ ︷︷ ︸
validation estimates this quantity

≤ Erin(f) + overfit penalty.

Where we have estimated Erout? Q5 in HW1. Why is it possible? Will
justify later in the understanding of validation error.
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Applications of Validation

Hyper-parameters: Something that are NOT automatically determined by
the learning algorithm.

I Complexity of H.

I Number of iterations in learning algorithm, i.e., stopping criterion.

I Learning rate.

I Regularization parameter λ (in our later lecture).

I · · ·

In many cases, we have one (or more) hyper-parameters. The value chosen
for hyper-parameters has a significant impact on the algorithm’s output.

Model selection:

I The problem of selecting values for hyper-parameters is called model
selection.

I The validation is used for model selection.
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The Validation Dilemma

I What we have? Training data.

I Can we use the training data to estimate the Erout and then select
hyper-parameters?

I These hyper-parameters usually control the balance between
underfitting and overfitting.

I Thus, it is not appropriate to let the training data influence the
selection of hyper-parameters, as this almost always leads to
overfitting.

Example: If we let the training data determine the degree in polynomial
regression (H is the set of all polynomial functions with degree less than
d), we will just end up choosing the maximum degree and doing
interpolation (overfitting).

 We need some other data for estimating Erout.
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The Idea of Validation: Split Training Data

The idea

Split the training set to another ’training set’ and a validation set.

Validation

After learning fθ′ ∈ H based on the new ’training set’, use validation set
to estimate Erout(fθ′).

Why estimate Erout(fθ′)? We can see if the learned fθ′ ∈ H is good or
not in terms of (the estimated) out-of-sample error.

Recall the goal of machine learning is to make the out-of-sample error
small. If Erout(fθ′) is small, it means we are nearly done. If not, it means
we have a bad learned model, either underfitting or overfitting.
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The Validation Set

Split training data set:

The validation set

Training dataset: S = {(x1, y1), . . . , (xn, yn)}
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Validation set Training set

I Data set: S = {(x1, y1), . . . , (xn, yn)}, size n.

I Validation set: Sval = {(x1, y1), . . . , (xk, yk)}, size k.

I New training set: Strain = {(xk+1, yk+1), . . . , (xn, yn)}, size n− k.
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Validation Error

Use the validation set to form an estimate (we use f ′ to represent fθ′ to
ease notation)

Erval(f
′) =

1

k

∑

i∈Sval
e(f ′(xi), yi)

How well Erval(f
′) approximates Erout(f

′)?

I In expectation

E [Erval(f
′)] =

1

k

∑

i∈Sval
E [e(f ′(xi), yi)] = Erout(f

′)

This implies that the validation error is an unbiased estimation of the
out-of-sample error of f ′.

However, unbiased estimation is a too weak guarantee. Can we have more?
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Validation Error Approximates Out-of-Sample Error
Mimicking the derivation of the generalization result for a single fixed
hypothesis, we can utilize the Hoeffding’s inequality to show that

Erout(f
′) ≤ Erval(f

′) +O
(

1√
k

)
.

I The key of this result is that we only need to derive the bound for a
single fixed hypothesis f ′, thus the derivation is exactly the same as
the fixed f generalization result. No union bounds needed.

I One key feature is that Erval(f
′) is computable.

I This means that once we have enough validation data, i.e., k is large,
we get good estimation of Erout(f

′) by Erval(f
′). Then, we will know

whether the model f ′ is good or not.

I This result applies to test data as well, i.e.,

Erout(f
′) ≤ Ertest(f

′) +O(1/
√
k)

if we have k test data points. The reasoning is exactly the same.

Any remaining issues?
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Trade-off in Validation

I Where is k from? Where is f ′ from?

n︸︷︷︸
number of data

= k︸︷︷︸
number of validation data

+ n− k︸ ︷︷ ︸
number of new training data

I Erval(f
′) is O

(
1/
√
k
)

-close to Erout(f
′), while f ′ is learned by using

n− k new training data.

I Small k: Bad estimate of Erout(f
′).

I Large k: Good estimate of Erout(f
′), but bad f ′ (since few training

samples).

Rule of thumb: k = n/5.
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Restoring: k is Put Back to n
I Validation is to estimate Erout(f

′) using Erval(f
′), must we output

f ′ as the learned model?
I No. It is mainly used to know how to choose hyper-parameters such

as the best possible hypothesis and learning rate.
I Hence, after we have used the validation set to estimate the

out-of-sample error, re-train on the whole data set.

The validation set

Training dataset: S = {(x1, y1), . . . , (xn, yn)}
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bf

Erval(f
0)
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Training set

f 0

By using the previous bound, we have

Erout(f̂) ≤ Erout(f
′) ≤ Erval(f

′) +O
(

1√
k

)
.

The gray part is a reasonable guess (not proof) from VC analysis.
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Model Selection
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Validation for Model Selection
We have discussed how to estimate Erout(f

′) using validation. It can be
important to estimate how good our f ′ will perform on the test data.

I Indeed, validation can be used to guide the learning process
systematically, by the way of model selection.

I Recall that model selection is to select hyper-parameters. These could
be the choice between a linear model and a nonlinear model, the
choice of order of polynomials in a model, the choice of learning rate,
or any other choice that affects the learning process.

I Setup: Suppose we have m candidate hypothesis spaces (can also be
m different learning rate choices, etc)

H1, . . . ,Hm.

We can use the validation set to estimate the out-of-sample error by
using Erval(f

′
j) for each f ′j learned from these model spaces.

I Selection: Choose j? such that Erval(f
′
j?) ≤ Erval(f

′
j) for all j.

I Restoring: Train f on the whole set using model space Hj? , get f̂ .
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Validation for Model Selection: illustration

The validation set

Training dataset: S = {(x1, y1), . . . , (xn, yn)}
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Validation setTraining set (k)(n−k)

H1, . . . , Hm

f 0
1, . . . , f

0
m

Erval(f
0
1), . . . , Erval(f

0
m)

Pick the best j?

Hj? bf
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Generalization Error of Model Selection

The model selection process gives a new hypothesis space consists of

Hval = {f ′1, f ′2, . . . , f ′m}.

Model selection chooses one from Hval that achieves the smallest
validation error.

I This process is equivalent to learn a model from Hval using the
validation set, where Erval is the “in-sample” error.

I This setting allows us to apply the generalization analysis for finite
hypotheses space case, since Hval only consists of m hypotheses, i.e.,
|Hval| = m.

I This gives

Erout(f̂) ≤Erout(f
′
j?) ≤ Erval(f

′
j?) +O

(√
logm

k

)
.

Again, the gray part is a reasonable guess from VC analysis.
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Validation vs. Testing

I We call this “validation”, but how is it different from “testing”?

I Typically, validation is used to make learning choices, i.e., choosing
hyper-parameters to avoid overfitting.

However,

The test data can never influence the training phase in any way.

If it impacts the learning process, i.e., which final f̂ ∈ H we choose, then
it is no longer a test set,

it becomes a validation set.
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Validation Dilemma

What we would like to have

Erout(f̂) ⇡ Erout(f
0) ⇡ Erval(f

0)

small k large k

I All we need to do is set k so that it is simultaneously small and large...

Is it possible? Yes.

 Next lecture: Cross validation and regularization.
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