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Recap: Convex Instances in Machine Learning

We have the following functions are convex:

I Least squares:

L(θ) = ‖Xθ − y‖22.
I Robust linear regression (HW1).

I Logistic regression:

L(θ) = 1

n

n∑
i=1

log
(
1 + exp

(
−yi · θ>xi

))
.

I Multi-class logistic regression:

L(Θ) = − 1

n

n∑
i=1

K∑
`=1

1{yi=`} log

(
exp(θ>` xi)∑K
j=1 exp(θ

>
j xi)

)
.

I SVM learning problem (later).
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Recap: Gradient Descent

Gradient descent (GD)

θk+1 = θk − µk∇L(θk)

I µk is the learning rate / stepsize.

GD is equivalent to

θk+1 = argmin
θ∈Rd

lk(θ) := L(θk) +∇L(θk)>(θ − θk) +
1

2µk
‖θ − θk‖22

I L(θk) +∇L(θk)>(θ − θk) is linear approximation of L at θk.

I 1
2µk
‖θ − θk‖22 is proximal term related to learning rate µk.

I lk(θ) is a quadratic function to be minimized at each iteration.
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More on Gradient Descent

Gradient Descent with Acceleration
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A Useful Algorithm Design Framework

Suppose the task is minθ∈Rd L(θ), we can design an algorithm as

θk+1 = argmin
θ∈Rd

{
qk(θ) +

1

2µk
‖θ − θk‖22

}
µk is learning rate-like quantity.

I When qk(θ) is linear approximation of L =⇒ gradient descent

I When qk(θ) is second-order approximation of L =⇒ Newton’s
method

I When qk(θ) is L itself =⇒ proximal point method

I When qk(θ) is single component linear approximation of L =⇒
stochastic gradient descent (SGD)

I . . .

Many optimization algorithms follow this designing framework.
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Convergence Issue
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Convergence of Iterative Algorithm

I To solve minθ∈Rd L(θ), we cannot obtain the solution θ̂ analytically.

I Design an iterative algorithm, start with θ0, it will generate

{θ0,θ1,θ2, . . . ,θk, . . .}.

Convergence analysis of an algorithm concerns:

I Will θk converge to the solution θ̂ ? That is

lim
k→∞

θk
?
= θ̂.

I If yes, what is the speed of this convergence?
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Convergence of GD

I Suppose that L is convex and differentiable and has Lipschitz
continuous gradient with parameter L,

‖∇L(w)−∇L(u)‖2 ≤ L‖w − u‖2, ∀w,u

 Both convexity and Lipschitz gradient are satisfied in LR.

Theorem: Convergence and Convergence rate of GD

Gradient descent with constant learning rate µk = µ = 1/L satisfies

L(θk)− L(θ̂) ≤
L‖θ0 − θ̂‖22

2k

I L(θk) converges to L(θ̂) at the rate of O(1/k).
I It does not mean {θk} converges to θ̂ at a certain rate.

I L(θk)− L(θ̂) is called sub-optimality gap.

I Proof is put in the supplementary material.
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Learning Rate, Stopping Criterion, and Applying GD to LR
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The Choice of Learning Rate

Gradient descent:
θk+1 = θk − µk∇L(θk)

I In practice, the simplest choice for the learning rate is to use a
constant learning rate, i.e., µk = µ for k = 0, 1, . . . for some relatively
small µ. Some typical guess: 0.05, 0.01, 0.005...
 Typically, a larger model often needs a smaller constant learning
rate.

I In optimization, one can also use certain kind of line-search method
for choosing µk in an adaptive manner.
 However, in machine learning, line-search is not used as it wastes
too many computations.

I We will introduce decaying learning rate schedules when we study
stochastic gradient descent ( later).
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Stopping Criterion for GD

A practical question: Run GD, when to stop?

I We cannot let k go to infinity in practice since the algorithm will
never stop in this way.

I We need a practical stopping criterion.

Typical stopping criteria:

I Fix the total number of iterations as K.

I Stop when ‖∇L(θk)‖2 is small, say ‖∇L(θk)‖2 ≤ ε.

- since ‖∇L(θ̂)‖2 = 0 at minimum θ̂.

I Stop when ‖θk+1 − θk‖2 is small, say ‖θk+1 − θk‖2 ≤ ε.

I In machine learning, stop when validation error is going to increase.
( Later)

CUHK-Shenzhen • SDS Xiao Li 11 / 22



Applying GD to LR

Given a set of training data points: {(x1, y1), . . . , (xn, yn)}, the learning
problem of binary LR is:

θ̂ = argmin
θ∈Rd

{
L(θ) := 1

n

n∑
i=1

log
(
1 + exp

(
−yi · θ>xi

))}
.

I L is convex and has Lipschitz gradient.

I We can apply GD:

θk+1 = θk − µk∇L(θk)

and it has convergence guarantee of L(θk)− L(θ̂) ≤ O(1/k) if the
learning rate is chosen properly.

I The main elements are: 1. Compute the gradient and form the search
direction. 2. Determine learning rate (usually a small constant). 3.
Stop when the stopping criterion is satisfied.

I Need to know how to compute the gradient by chain rule.
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Some Pros and Cons for GD

Pros:

I GD has simple implementation.

I It works well for almost all differentiable convex problems.

Cons:

I The convergence speed of GD is relatively slow.

Is there an method that simultaneously has simple implementation and
fast convergence speed?  Acceleration technique.
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More on Gradient Descent

Gradient Descent with Acceleration
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Gradient Descent with Momentum
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Gradient Descent with Momentum
GD:

θk+1 = θk − µk∇L(θk)
I GD forces suffcient decrease at each iteration, leaving the possibility

of exploring more efficient search direction.

A quite popular technique for accelerating gradient descent method is the
momentum technique:

θk+1 = θk − µk∇L(θk) + βk (θk − θk−1)︸ ︷︷ ︸
momemtum

An equivalent form:

θk+1 = θk −mk

mk = µk∇L(θk) + βkmk−1

I Due to Boris T. Polyak.
I Each iteration takes nearly the same time cost as GD.
I Widely used in practice, notably in Adam algorithm.
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Momentum Acceleration: Geometric Interpretation

GD:

θk+1 = θk − µk∇L(θk)

GD with momentum:

θk+1 = θk − µk∇L(θk) + βk(θk − θk−1)

✓k�1 ✓k

✓k+1

✓k � ✓k�1
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Nesterov’s Accelerated Gradient Descent
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Nesterov’s Acceleration

GD:
θk+1 = θk − µk∇L(θk)

Another very useful technique to accelerate GD is Nesterov’s accelerated
gradient descent (AGD):

θk+1 = wk − µk∇L(wk)

wk = θk +
k − 1

k + 2
(θk − θk−1)

I Nesterov’s acceleration is motivated by momentum but with gradient
evaluated at the extrapolated point and a specific choice of βk.

I Each iteration takes nearly the same time cost as GD.

I Widely used in practice.
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Nesterov’s Acceleration: Geometric Interpretation

GD:

θk+1 = θk − µk∇L(θk)

AGD:

θk+1 = wk − µk∇L(wk)

wk = θk +
k − 1

k + 2
(θk − θk−1)

✓k�1 ✓k

✓k+1
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Convergence of AGD

I Suppose that L is convex and differentiable and has Lipschitz
continuous gradient with parameter L (For example, LR problem).

Theorem: Convergence of AGD

Accelerated gradient descent with constant learning rate µk = µ = 1/L
satisfies

L(θk)− L(θ̂) ≤
2L‖θ0 − θ̂‖22
(k + 1)2

I L(θk) converges to L(θ̂) at the rate of O(1/k2).
I This rate is much faster than GD, which only has O(1/k)

convergence rate.
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Solving Logistic Regression
Learning problem: Multi-class logistic regression

Θ̂ = argmin
Θ∈R(d+1)×K

− 1

n

n∑
i=1

K∑
`=1

1{yi=`} log

(
exp(θ>` xi)∑K
j=1 exp(θ

>
j xi)

)
Setup:

I MNIST classification. n = 60000, d = 784,K = 10.

I βk = 0.98 in GD with momentum.

I Learning rate µk = 2× 10−2.
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 We will implement in HW2.

 Next lectures: Overfitting.
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