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Recap: Convex Instances in Machine Learning

We have the following functions are convex:

» Least squares:
L(0) = X6 —yl3.
> Robust linear regression (HW1).
» Logistic regression:
1 & T
L£(0) = - 2log (1 + exp (—yi -0 .CBZ)) .

» Multi-class logistic regression:

S )

i=1 (=1 J 16Xp(0 mz)

» SVM learning problem (later).

CUHK-Shenzhen @ SDS Xiao Li 2/22



Recap: Gradient Descent

Gradient descent (GD)

‘ 0k+1 = Hk — ukV£(0k) ‘

» 1y is the learning rate / stepsize.

GD is equivalent to

. 1
Ory1 = argmin 1;(0) := L(0;) + VL(O,) (0 —0) + —6 — 6,3
R 2,

> L(0k) + VL(0;)" (6 — 0y) is linear approximation of L at 6.
2‘1% |0 — 04||3 is proximal term related to learning rate .

> [;(0) is a quadratic function to be minimized at each iteration.
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More on Gradient Descent
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A Useful Algorithm Design Framework

Suppose the task is mingcga £(0), we can design an algorithm as

. 1
0.1 = argmin {Qk(a) + G 6 — ekg}
OcRd Kk

1y is learning rate-like quantity.

>
>

>
>

When ¢ (0) is linear approximation of £ = gradient descent

When ¢ (0) is second-order approximation of £ = Newton's
method

When ¢, (0) is L itself = proximal point method

When ¢ (0) is single component linear approximation of £ =—>
stochastic gradient descent (SGD)

> ..

Many optimization algorithms follow this designing framework.
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Convergence Issue
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Convergence of Iterative Algorithm

> To solve mingcge £(0), we cannot obtain the solution 0 analytically.

» Design an iterative algorithm, start with 0y, it will generate

{005017927”'70167"'}'

Convergence analysis of an algorithm concerns:
» Will 8, converge to the solution 8 7 That is
. ? A
lim 8, = 6.
k—o0

> If yes, what is the speed of this convergence?
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Convergence of GD

» Suppose that £ is convex and differentiable and has
with parameter L,

IVL(w) — VL(u)||2 < L||lw — ull2, Yw,u
~> Both convexity and Lipschitz gradient are satisfied in LR.

Theorem: Convergence and Convergence rate of GD

Gradient descent with constant learning rate uj = 1 = 1/L satisfies

L||6 — 6|2

£(6x) - £9) < ==

-~

> L(0)) converges to L(0) at the rate of O(1/k).

» |t does not mean {6} converges to 0 at a certain rate.
> £(6;) — L(8) is called

» Proof is put in the supplementary material.
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Learning Rate, Stopping Criterion, and Applying GD to LR
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The Choice of Learning Rate

Gradient descent:
0k+1 = Ok - /LkVE(Ok)

» In practice, the simplest choice for the learning rate is to use a
,i.e, pp=pfor k=0,1,... for some relatively
small u. Some typical guess: 0.05,0.01,0.005...
~~ Typically, a larger model often needs a smaller constant learning
rate.

» In optimization, one can also use certain kind of method
for choosing p in an adaptive manner.
~> However, in machine learning, line-search is not used as it wastes
too many computations.

» We will introduce decaying learning rate schedules when we study
stochastic gradient descent (~ later).
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Stopping Criterion for GD

A practical question: Run GD, when to stop?

» We cannot let k£ go to infinity in practice since the algorithm will
never stop in this way.

» We need a practical stopping criterion.

Typical stopping criteria:
» Fix the total number of iterations as K.
> Stop when [|[VL(6y)]2 is small, say [VL(0)||2 < e.
- since |[VL(8)||]2 = 0 at minimum 6.
> Stop when ||0;11 — 0|2 is small, say |01 — Okll2 < e.

» In machine learning, stop when is going to increase.
(~Later)
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Applying GD to LR

Given a set of training data points: {(x1,%1),..., (n,yn)}, the learning
problem of binary LR is:

6 = argmin {E(H) = %ilog (1 + exp (—il/z‘ . BTwi)) } .
i=1

OcRd

» L[ is convex and has Lipschitz gradient.
» We can apply GD:

011 =05, — 1, VL(Oy)

and it has convergence guarantee of £(0}) — E(@) < O(1/k) if the
learning rate is chosen properly.

» The main elements are: 1. Compute the gradient and form the search
direction. 2. Determine learning rate (usually a small constant). 3.
Stop when the stopping criterion is satisfied.

» Need to know how to compute the gradient by chain rule.
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Some Pros and Cons for GD

Pros:
» GD has simple implementation.
» It works well for almost all differentiable convex problems.

Cons:
» The convergence speed of GD is relatively slow.

Is there an method that simultaneously has simple implementation and
fast convergence speed? ~~ Acceleration technique.
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Gradient Descent with Acceleration
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Gradient Descent with Momentum
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Gradient Descent with Momentum
GD:
11 = 6 — e VL(O))
» GD forces suffcient decrease at each iteration, leaving the possibility
of exploring more efficient search direction.

A quite popular technique for accelerating gradient descent method is the
technique:

011 =0r — i VL(Ok) + B (O — Or—1)
—_———

momemtum

An equivalent form:

Or11 =0, —my
my, = i VL(OL) + By

» Due to Boris T. Polyak.
» Each iteration takes nearly the same time cost as GD.
» Widely used in practice, notably in algorithm.
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Momentum Acceleration: Geometric Interpretation

GD with momentum:

01 =0 — i VL(Ok) + Br(0x — 011)

—VL(6))

_vﬁ(ak) ° e 9k+1

01 0 6, 1 0, 0. — 0,
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Nesterov's Accelerated Gradient Descent
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Nesterov's Acceleration

GD:
Orr1 =01 — 1 VL(O)

Another very useful technique to accelerate GD is

011 = wy — 1 VL(wy)

k—1
wy =0, + —— (01 — 05_1)

» Nesterov's acceleration is motivated by momentum but with gradient
evaluated at the extrapolated point and a specific choice of (.

» Each iteration takes nearly the same time cost as GD.

> Widely used in practice.
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Nesterov's Acceleration:

GD:

011 =05, — 1, VL(Oy)

Ok+1
—VL(60r) °
'S - 0/
ek—l Bk

CUHK-Shenzhen @ SDS

Geometric Interpretation

AGD:
0111 = wy, — ppVL(Wy)
k-1
Wy = ak + m(ek - kal)
011
/o
/_Vﬁ(wk)
PR
Or—1 0, Wy
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Convergence of AGD

» Suppose that £ is convex and differentiable and has Lipschitz
continuous gradient with parameter L (For example, LR problem).

Theorem: Convergence of AGD

Accelerated gradient descent with constant learning rate ux, = p = 1/L
satisfies

2L]160 — 6113

£(6:) = £00) < =y

> L(0)) converges to £(§) at the rate of O(1/k?).

» This rate is much faster than GD, which only has O(1/k)
convergence rate.

CUHK-Shenzhen @ SDS Xiao Li 21 /22



Solving Logistic Regression
Learning problem: Multi-class logistic regression

N 0,z
® = argmin —— ZZ 1{y,=ey log < exp(0, i) )

@cR(d+1)xK i—1 (=1 Z] 1eXp(0 a}z)

Setup:
» MNIST classification. n = 60000, d = 784, K = 10.
» 3 = 0.98 in GD with momentum.
» Learning rate p, =2 x 1072,

Iteration Iteration

~> We will implement in HW2.
~» Next lectures: Overfitting.
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