

DDA5001 Machine Learning

Gradient-based Optimization Algorithm (Part II)

Xiao Li

School of Data Science
The Chinese University of Hong Kong, Shenzhen

Recap: Convex Instances in Machine Learning

We have the following functions are convex:

- Least squares:

$$\mathcal{L}(\boldsymbol{\theta}) = \|\mathbf{X}\boldsymbol{\theta} - \mathbf{y}\|_2^2.$$

- Robust linear regression (HW1).
- Logistic regression:

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp \left(-y_i \cdot \boldsymbol{\theta}^\top \mathbf{x}_i \right) \right).$$

- Multi-class logistic regression:

$$\mathcal{L}(\boldsymbol{\Theta}) = -\frac{1}{n} \sum_{i=1}^n \sum_{\ell=1}^K 1_{\{y_i = \ell\}} \log \left(\frac{\exp(\boldsymbol{\theta}_\ell^\top \mathbf{x}_i)}{\sum_{j=1}^K \exp(\boldsymbol{\theta}_j^\top \mathbf{x}_i)} \right).$$

- SVM learning problem (later).

Recap: Gradient Descent

Gradient descent (GD)

$$\theta_{k+1} = \theta_k - \mu_k \nabla \mathcal{L}(\theta_k)$$

- ▶ μ_k is the **learning rate** / stepsize.

GD is equivalent to

$$\theta_{k+1} = \underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \ l_k(\theta) := \mathcal{L}(\theta_k) + \nabla \mathcal{L}(\theta_k)^\top (\theta - \theta_k) + \frac{1}{2\mu_k} \|\theta - \theta_k\|_2^2$$

- ▶ $\mathcal{L}(\theta_k) + \nabla \mathcal{L}(\theta_k)^\top (\theta - \theta_k)$ is **linear approximation** of \mathcal{L} at θ_k .
- ▶ $\frac{1}{2\mu_k} \|\theta - \theta_k\|_2^2$ is **proximal term** related to learning rate μ_k .
- ▶ $l_k(\theta)$ is a quadratic function to be minimized at each iteration.

More on Gradient Descent

Gradient Descent with Acceleration

A Useful Algorithm Design Framework

Suppose the task is $\min_{\theta \in \mathbb{R}^d} \mathcal{L}(\theta)$, we can design an algorithm as

$$\theta_{k+1} = \operatorname{argmin}_{\theta \in \mathbb{R}^d} \left\{ q_k(\theta) + \frac{1}{2\mu_k} \|\theta - \theta_k\|_2^2 \right\}$$

μ_k is learning rate-like quantity.

- ▶ When $q_k(\theta)$ is linear approximation of \mathcal{L} \Rightarrow **gradient descent**
- ▶ When $q_k(\theta)$ is second-order approximation of \mathcal{L} \Rightarrow **Newton's method**
- ▶ When $q_k(\theta)$ is \mathcal{L} itself \Rightarrow **proximal point method**
- ▶ When $q_k(\theta)$ is single component linear approximation of \mathcal{L} \Rightarrow **stochastic gradient descent (SGD)**
- ▶ ...

Many optimization algorithms follow this designing framework.

Convergence Issue

Convergence of Iterative Algorithm

- ▶ To solve $\min_{\theta \in \mathbb{R}^d} \mathcal{L}(\theta)$, we cannot obtain the solution $\hat{\theta}$ analytically.
- ▶ Design an iterative algorithm, start with θ_0 , it will generate

$$\{\theta_0, \theta_1, \theta_2, \dots, \theta_k, \dots\}.$$

Convergence analysis of an algorithm concerns:

- ▶ Will θ_k converge to the solution $\hat{\theta}$? That is

$$\lim_{k \rightarrow \infty} \theta_k \stackrel{?}{=} \hat{\theta}.$$

- ▶ If yes, what is the speed of this convergence?

Convergence of GD

- ▶ Suppose that \mathcal{L} is **convex** and **differentiable** and has **Lipschitz continuous gradient** with parameter L ,

$$\|\nabla \mathcal{L}(\mathbf{w}) - \nabla \mathcal{L}(\mathbf{u})\|_2 \leq L\|\mathbf{w} - \mathbf{u}\|_2, \quad \forall \mathbf{w}, \mathbf{u}$$

~~ Both convexity and Lipschitz gradient are satisfied in LR.

Theorem: Convergence and Convergence rate of GD

Gradient descent with constant learning rate $\mu_k = \mu = 1/L$ satisfies

$$\mathcal{L}(\boldsymbol{\theta}_k) - \mathcal{L}(\widehat{\boldsymbol{\theta}}) \leq \frac{L\|\boldsymbol{\theta}_0 - \widehat{\boldsymbol{\theta}}\|_2^2}{2k}$$

- ▶ $\mathcal{L}(\boldsymbol{\theta}_k)$ converges to $\mathcal{L}(\widehat{\boldsymbol{\theta}})$ at the rate of $\mathcal{O}(1/k)$.
- ▶ It does not mean $\{\boldsymbol{\theta}_k\}$ converges to $\widehat{\boldsymbol{\theta}}$ at a certain rate.
- ▶ $\mathcal{L}(\boldsymbol{\theta}_k) - \mathcal{L}(\widehat{\boldsymbol{\theta}})$ is called **sub-optimality gap**.
- ▶ Proof is put in the supplementary material.

Learning Rate, Stopping Criterion, and Applying GD to LR

The Choice of Learning Rate

Gradient descent:

$$\theta_{k+1} = \theta_k - \mu_k \nabla \mathcal{L}(\theta_k)$$

- ▶ In practice, the simplest choice for the learning rate is to use a **constant learning rate**, i.e., $\mu_k = \mu$ for $k = 0, 1, \dots$ for some relatively small μ . Some typical guess: 0.05, 0.01, 0.005...
~~ Typically, a **larger** model often needs a **smaller** constant learning rate.
- ▶ In optimization, one can also use certain kind of **line-search** method for choosing μ_k in an adaptive manner.
~~ However, in machine learning, line-search is not used as it wastes too many computations.
- ▶ We will introduce **decaying learning rate** schedules when we study stochastic gradient descent (~~ later).

Stopping Criterion for GD

A practical question: Run GD, when to stop?

- ▶ We cannot let k go to infinity in practice since the algorithm will never stop in this way.
- ▶ We need a practical **stopping criterion**.

Typical stopping criteria:

- ▶ Fix the total number of iterations as K .
- ▶ Stop when $\|\nabla \mathcal{L}(\boldsymbol{\theta}_k)\|_2$ is small, say $\|\nabla \mathcal{L}(\boldsymbol{\theta}_k)\|_2 \leq \varepsilon$.
 - since $\|\nabla \mathcal{L}(\hat{\boldsymbol{\theta}})\|_2 = 0$ at minimum $\hat{\boldsymbol{\theta}}$.
- ▶ Stop when $\|\boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k\|_2$ is small, say $\|\boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k\|_2 \leq \varepsilon$.
- ▶ **In machine learning**, stop when **validation error** is going to increase.
(\rightsquigarrow Later)

Applying GD to LR

Given a set of training data points: $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, the learning problem of binary LR is:

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \mathcal{L}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp \left(-y_i \cdot \boldsymbol{\theta}^\top \mathbf{x}_i \right) \right) \right\}.$$

- ▶ \mathcal{L} is convex and has Lipschitz gradient.
- ▶ We can apply GD:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \mu_k \nabla \mathcal{L}(\boldsymbol{\theta}_k)$$

and it has convergence guarantee of $\mathcal{L}(\boldsymbol{\theta}_k) - \mathcal{L}(\hat{\boldsymbol{\theta}}) \leq \mathcal{O}(1/k)$ if the learning rate is chosen properly.

- ▶ The main elements are: 1. Compute the gradient and form the search direction. 2. Determine learning rate (usually a small constant). 3. Stop when the stopping criterion is satisfied.
- ▶ Need to know how to compute the gradient by chain rule.

Some Pros and Cons for GD

Pros:

- ▶ GD has simple implementation.
- ▶ It works well for almost all differentiable convex problems.

Cons:

- ▶ The convergence speed of GD is relatively slow.

Is there a method that simultaneously has simple implementation and fast convergence speed? \leadsto **Acceleration technique**.

More on Gradient Descent

Gradient Descent with Acceleration

Gradient Descent with Momentum

Gradient Descent with Momentum

GD:

$$\theta_{k+1} = \theta_k - \mu_k \nabla \mathcal{L}(\theta_k)$$

- ▶ GD forces sufficient decrease at each iteration, leaving the possibility of exploring more efficient search direction.

A quite popular technique for accelerating gradient descent method is the **momentum** technique:

$$\theta_{k+1} = \theta_k - \mu_k \nabla \mathcal{L}(\theta_k) + \beta_k \underbrace{(\theta_k - \theta_{k-1})}_{\text{momentum}}$$

An equivalent form:

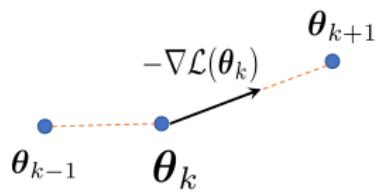
$$\begin{aligned}\theta_{k+1} &= \theta_k - m_k \\ m_k &= \mu_k \nabla \mathcal{L}(\theta_k) + \beta_k m_{k-1}\end{aligned}$$

- ▶ Due to Boris T. Polyak.
- ▶ Each iteration takes nearly the same time cost as GD.
- ▶ Widely used in practice, notably in **Adam** algorithm.

Momentum Acceleration: Geometric Interpretation

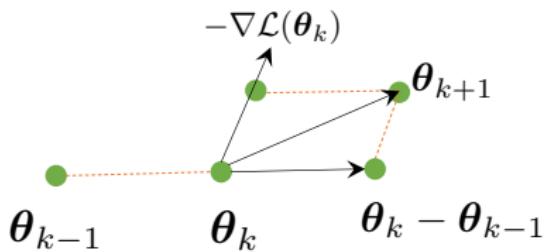
GD:

$$\theta_{k+1} = \theta_k - \mu_k \nabla \mathcal{L}(\theta_k)$$



GD with momentum:

$$\theta_{k+1} = \theta_k - \mu_k \nabla \mathcal{L}(\theta_k) + \beta_k (\theta_k - \theta_{k-1})$$



Nesterov's Accelerated Gradient Descent

Nesterov's Acceleration

GD:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \mu_k \nabla \mathcal{L}(\boldsymbol{\theta}_k)$$

Another very useful technique to accelerate GD is **Nesterov's accelerated gradient descent (AGD)**:

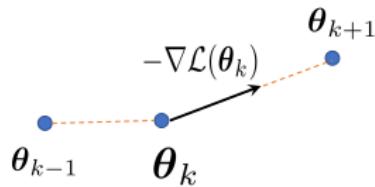
$$\begin{aligned}\boldsymbol{\theta}_{k+1} &= \mathbf{w}_k - \mu_k \nabla \mathcal{L}(\mathbf{w}_k) \\ \mathbf{w}_k &= \boldsymbol{\theta}_k + \frac{k-1}{k+2}(\boldsymbol{\theta}_k - \boldsymbol{\theta}_{k-1})\end{aligned}$$

- ▶ Nesterov's acceleration is motivated by momentum but with gradient evaluated at the extrapolated point and a specific choice of β_k .
- ▶ **Each iteration takes nearly the same time cost as GD.**
- ▶ Widely used in practice.

Nesterov's Acceleration: Geometric Interpretation

GD:

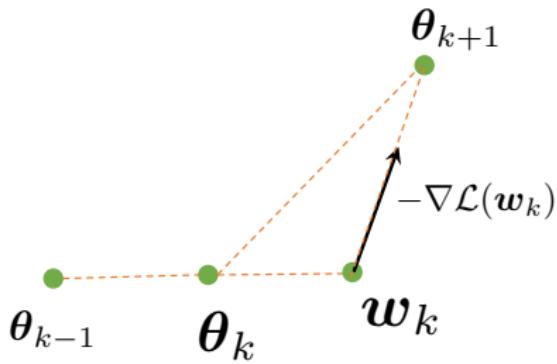
$$\theta_{k+1} = \theta_k - \mu_k \nabla \mathcal{L}(\theta_k)$$



AGD:

$$\theta_{k+1} = w_k - \mu_k \nabla \mathcal{L}(w_k)$$

$$w_k = \theta_k + \frac{k-1}{k+2}(\theta_k - \theta_{k-1})$$



Convergence of AGD

- ▶ Suppose that \mathcal{L} is convex and differentiable and has **Lipschitz continuous gradient** with parameter L (For example, LR problem).

Theorem: Convergence of AGD

Accelerated gradient descent with constant learning rate $\mu_k = \mu = 1/L$ satisfies

$$\mathcal{L}(\boldsymbol{\theta}_k) - \mathcal{L}(\widehat{\boldsymbol{\theta}}) \leq \frac{2L\|\boldsymbol{\theta}_0 - \widehat{\boldsymbol{\theta}}\|_2^2}{(k+1)^2}$$

- ▶ $\mathcal{L}(\boldsymbol{\theta}_k)$ converges to $\mathcal{L}(\widehat{\boldsymbol{\theta}})$ at the rate of $\mathcal{O}(1/k^2)$.
- ▶ This rate is much faster than GD, which only has $\mathcal{O}(1/k)$ convergence rate.

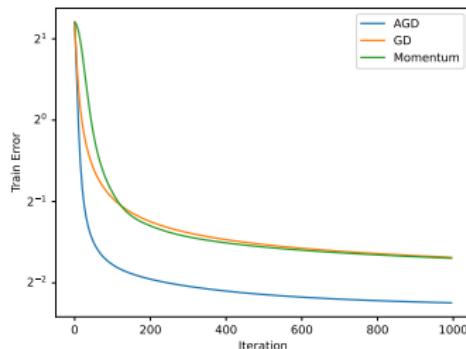
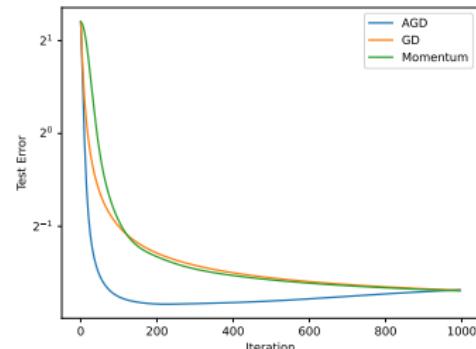
Solving Logistic Regression

Learning problem: Multi-class logistic regression

$$\hat{\Theta} = \underset{\Theta \in \mathbb{R}^{(d+1) \times K}}{\operatorname{argmin}} -\frac{1}{n} \sum_{i=1}^n \sum_{\ell=1}^K 1_{\{y_i=\ell\}} \log \left(\frac{\exp(\boldsymbol{\theta}_\ell^\top \mathbf{x}_i)}{\sum_{j=1}^K \exp(\boldsymbol{\theta}_j^\top \mathbf{x}_i)} \right)$$

Setup:

- ▶ MNIST classification. $n = 60000, d = 784, K = 10$.
- ▶ $\beta_k = 0.98$ in GD with momentum.
- ▶ Learning rate $\mu_k = 2 \times 10^{-2}$.



~~ We will implement in HW2.

~~ Next lectures: Overfitting.