

DDA5001 Machine Learning

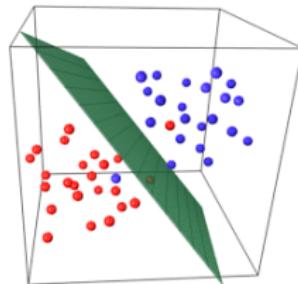
Missing Proofs for VC Dimension

Xiao Li

School of Data Science
The Chinese University of Hong Kong, Shenzhen

VC Dimension of Linear Classifier

For a linear classifier, we can derive its VC dimension in a general sense. This can be generalized to the following general result:



Theorem

For d -dimensional (binary) linear classifier, we have

$$d_{VC} = d + 1.$$

Proof: VC Dimension of Binary Linear Classifier

Our general proof idea is divided into two parts: 1) We show that $d_{VC} \geq d + 1$. 2) We show that $d_{VC} \leq d + 1$. The only possibility will be $d_{VC} = d + 1$.

We prove the first direction.

- ▶ We consider any invertible data matrix with $d + 1$ data points, i.e., $\mathbf{X} \in \mathbb{R}^{(d+1) \times (d+1)}$ (why also $d + 1$ columns?).
- ▶ We can choose a $\mathcal{H} \ni f_{\boldsymbol{\theta}}(\mathbf{x}) = \text{sign}(\boldsymbol{\theta}^T \mathbf{x})$ by $\boldsymbol{\theta} = \mathbf{X}^{-1} \mathbf{y}$ for arbitrary $\mathbf{y} \in \{-1, +1\}^{d+1}$.
- ▶ Then, we will have $\text{sign}(\mathbf{X} \boldsymbol{\theta}) = \mathbf{y}$. Since $\mathbf{y} \in \{-1, +1\}^{d+1}$ is arbitrary. We have shown that $d_{VC} \geq d + 1$.

Proof: VC Dimension of Binary Linear Classifier

We now prove the second direction by showing: We **cannot shatter** any set of $d + 2$ data points.

- ▶ Consider any $d + 2$ data points $\{\mathbf{x}_1, \dots, \mathbf{x}_{d+2}\}$.
- ▶ We have more points than dimension. Through the basic linear algebra, there must be some j such that $\mathbf{x}_j = \sum_{i \neq j} \alpha_i \mathbf{x}_i$ and not all α_i 's are zero.
- ▶ Consider the following dichotomy: All \mathbf{x}_i 's with $\alpha_i \neq 0$ are labeled as $y_i = \text{sign}(\alpha_i)$, and $y_j = -1$.
- ▶ $\mathbf{x}_j = \sum_{i \neq j} \alpha_i \mathbf{x}_i$ implies that $\boldsymbol{\theta}^\top \mathbf{x}_j = \sum_{i \neq j} \alpha_i \boldsymbol{\theta}^\top \mathbf{x}_i$. For \mathbf{x}_i 's with $\alpha_i \neq 0$, by our construction, we force $y_i = \text{sign}(\boldsymbol{\theta}^\top \mathbf{x}_i) = \text{sign}(\alpha_i)$, which implies $\alpha_i \boldsymbol{\theta}^\top \mathbf{x}_i > 0$ whenever $\alpha_i \neq 0$.
- ▶ This implies $y_j = \text{sign}(\boldsymbol{\theta}^\top \mathbf{x}_j) = \text{sign}(\sum_{i \neq j} \alpha_i \boldsymbol{\theta}^\top \mathbf{x}_i) = +1$, which contradicts to our setting $y_j = -1$. Hence, our constructed dichotomy cannot be achieved by choosing any $f \in \mathcal{H}$ (more precisely, choosing $\boldsymbol{\theta}$). This means $\mathcal{G}_{\mathcal{H}}(d+2) < 2^{d+2}$.

We then have $d_{VC} \leq d + 1$ and complete the proof.

VC Dimension Generalization Result

After introducing all the related notions, we can now introduce the VC dimension generalization result.

VC generalization bound

For any $\delta > 0$, with probability at least $1 - \delta$, we have the following generalization bound:

$$\forall f \in \mathcal{H} \quad \text{Er}_{\text{out}}(f) \leq \text{Er}_{\text{in}}(f) + \sqrt{\frac{8}{n} \log \left(\frac{4\mathcal{G}_{\mathcal{H}}(2n)}{\delta} \right)}$$

Upon invoking the upper bound on growth function using VC dimension, we have

$$\forall f \in \mathcal{H} \quad \text{Er}_{\text{out}}(f) \leq \text{Er}_{\text{in}}(f) + \sqrt{\frac{8}{n} \log \left(\frac{4((2n)^{d_{\text{VC}}} + 1)}{\delta} \right)}$$

- ▶ pp. 187 - 192 in the “Learning from data” book provides a full proof. We provide a sketch.

Proof Sketch

- ▶ Applying union bound by counting $|\mathcal{H}|$ leads to infinity. Nonetheless, \mathcal{H} can only generate $\mathcal{G}_{\mathcal{H}}(n)$ (finite) dichotomies even if \mathcal{H} has infinitely many f .
- ▶ Hence, $\text{Er}_{\text{in}}(f)$ can only take $\mathcal{G}_{\mathcal{H}}(n)$ different values. However, $\text{Er}_{\text{out}}(f)$ has the space \mathcal{X} as input space, which can still take infinitely many values.
- ▶ The key idea in the proof is to consider a “ghost dataset” \mathcal{S}' that are i.i.d. to \mathcal{S} . Then, one can show that

$$\Pr [|\text{Er}_{\text{in}}(f) - \text{Er}_{\text{out}}(f)| \geq t] \leq 2 \Pr [|\text{Er}_{\text{in}}(f) - \text{Er}'_{\text{in}}(f)| \geq t/2].$$

- ▶ Applying standard union bound and then Hoeffding's inequality to the right-hand side yields the result.

It is because of the introducing of the ghost dataset (which introduce the factors 2 highlighted in a purple color), bound changes to

$$\sqrt{\frac{1}{2n} \log \left(\frac{2|\mathcal{H}|}{\delta} \right)} \quad \dashrightarrow \quad \sqrt{\frac{1}{2n} \log \left(\frac{2\mathcal{G}_{\mathcal{H}}(n)}{\delta} \right)} \quad \Rightarrow \quad \sqrt{\frac{8}{n} \log \left(\frac{4\mathcal{G}_{\mathcal{H}}(2n)}{\delta} \right)}$$