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VC Dimension of Linear Classifier

For a linear classifier, we can derive its VC dimension in a general sense.

This can be generalized to the following general result:

Theorem

For d-dimensional (binary) linear classifier, we have

dVC = d+ 1.

CUHK-Shenzhen • SDS Xiao Li 2 / 6



Proof: VC Dimension of Binary Linear Classifier

Our general proof idea is divided into two parts: 1) We show that
dVC ≥ d+ 1. 2) We show that dVC ≤ d+ 1. The only possibility will be
dVC = d+ 1.

We prove the first direction.

I We consider any invertible data matrix with d+ 1 data points, i.e.,
X ∈ R(d+1)×(d+1) (why also d+ 1 columns?).

I We can choose a H 3 fθ(x) = sign(θ>x) by θ =X−1y for arbitrary
y ∈ {−1,+1}d+1.

I Then, we will have sign(Xθ) = y. Since y ∈ {−1,+1}d+1 is
arbitrary. We has shown that dVC ≥ d+ 1.
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Proof: VC Dimension of Binary Linear Classifier

We now prove the second direction by showing: We cannot shatter any set
of d+ 2 data points.

I Consider any d+ 2 data points {x1, . . . ,xd+2}.
I We have more points than dimension. Through the basic linear

algebra, there must be some j such that xj =
∑

i 6=j αixi and not all
αi’s are zero.

I Consider the following dichotomy: All xi’s with αi 6= 0 are labeled as
yi = sign(αi), and yj = −1.

I xj =
∑

i 6=j αixi implies that θ>xj =
∑

i6=j αiθ
>xi. For xi’s with

αi 6= 0, by our construction, we force yi = sign(θ>xi) = sign(αi),
which implies αiθ

>xi > 0 whenever αi 6= 0.

I This implies yj = sign(θ>xj) = sign(
∑

i 6=j αiθ
>xi) = +1, which

contradicts to our setting yj = −1. Hence, our constructed
dichotomy cannot be achieved by choosing any f ∈ H (more
precisely, choosing θ). This means GH(d+ 2) < 2d+2.

We then have dVC ≤ d+ 1 and complete the proof.
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VC Dimension Generalization Result

After introducing all the related notions, we can now introduce the VC
dimension generalization result.

VC generalization bound

For any δ > 0, with probability at least 1− δ, we have the following gener-
alization bound:

∀f ∈ H Erout(f) ≤ Erin(f) +

√
8

n
log

(
4GH(2n)

δ

)
Upon invoking the upper bound on growth function using VC dimension,
we have

∀f ∈ H Erout(f) ≤ Erin(f) +

√
8

n
log

(
4((2n)dVC + 1)

δ

)
I pp. 187 - 192 in the “Learning from data” book provides a full proof.

We provide a sketch.
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Proof Sketch
I Applying union bound by counting |H| leads to infinity. Nonetheless,
H can only generate GH(n) (finite) dichotomies even if H has
infinitely many f .

I Hence, Erin(f) can only take GH(n) different values. However,
Erout(f) has the space X as input space, which can still take
infinitely many values.

I The key idea in the proof is to consider a “ghost dataset” S ′ that are
i.i.d. to S. Then, one can show that

Pr [|Erin(f)− Erout(f)| ≥ t] ≤ 2Pr
[∣∣Erin(f)− Er′in(f)

∣∣ ≥ t/2] .
I Applying standard union bound and then Hoeffding’s inequality to the

right-hand side yields the result.

It is because of the introducing of the ghost dataset (which introduce the
factors 2 highlighted in a purple color), bound changes to

√
1

2n
log

(
2|H|
δ

)
99K

√
1

2n
log

(
2GH(n)

δ

)
=⇒

√
8

n
log

(
4GH(2n)

δ

)
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