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VC Dimension of Linear Classifier

For a linear classifier, we can derive its VC dimension in a general sense.

This can be generalized to the following general result:

Theorem

For d-dimensional (binary) linear classifier, we have

‘ dyc =d+ 1.
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Proof: VC Dimension of Binary Linear Classifier

Our general proof idea is divided into two parts: 1) We show that

dyc > d+ 1. 2) We show that dyc < d+ 1. The only possibility will be
dyc =d+ 1.

We prove the first direction.

» We consider any invertible data matrix with d + 1 data points, i.e.,
X € RUHDX(d+1) (why also d + 1 columns?).

» We can choose a H 3 fo(x) = sign(BTw) by @ = X 'y for arbitrary
y € {1, +1}

» Then, we will have sign(X8) = y. Since y € {—1,+1}4*1 is
arbitrary. We has shown that dyc > d + 1.
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Proof: VC Dimension of Binary Linear Classifier

We now prove the second direction by showing: We cannot shatter any set
of d 4 2 data points.

» Consider any d + 2 data points {x1,...,T442}.

» We have more points than dimension. Through the basic linear
algebra, there must be some j such that x; = Zi# a;x; and not all
«;'s are zero.

» Consider the following dichotomy: All x;'s with a; # 0 are labeled as
y; = sign(e;), and y; = —1.

> ;= Z#j a;x; implies that OTa:j = Z#j ;0" z;. For ;'s with
i # 0, by our construction, we force y; = sign(0 ' x;) = sign(a;),
which implies aiHTmZ— > 0 whenever a; # 0.

> This implies y; = sign(0 ' ;) = sign( -, 4; ;0" x;) = +1, which
contradicts to our setting y; = —1. Hence, our constructed
dichotomy cannot be achieved by choosing any f € H (more
precisely, choosing 8). This means Gy (d + 2) < 29+2.

We then have dyc < d + 1 and complete the proof.
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VC Dimension Generalization Result

After introducing all the related notions, we can now introduce the VC
dimension generalization result.

VC generalization bound

For any § > 0, with probability at least 1 — §, we have the following gener-
alization bound:

VFEH  Erowlf) <Er(f)+ ¢ 8 o (4020

0

Upon invoking the upper bound on growth function using VC dimension,
we have

vieH Brout(f) < Erin(f) + \/i log (4((271)61\“_1))

0

» pp. 187 - 192 in the “Learning from data” book provides a full proof.
We provide a sketch.
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Proof Sketch

» Applying union bound by counting || leads to infinity. Nonetheless,
H can only generate Gy (n) (finite) dichotomies even if H has
infinitely many f.

» Hence, Er;,(f) can only take Gy (n) different values. However,
Erout(f) has the space X as input space, which can still take
infinitely many values.

» The key idea in the proof is to consider a “ghost dataset” S’ that are
i.i.d. to S. Then, one can show that

Pr [[Erin(f) — Erous(f)] 2 t] < 2Pr [|Brin(f) — Exj, (/)| = t/2] -

» Applying standard union bound and then Hoeffding's inequality to the
right-hand side yields the result.

It is because of the introducing of the ghost dataset (which introduce the
factors 2 highlighted in a purple color), bound changes to

E ) () — (B
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