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Law of Large Numbers

Typically, if we have X, X1, Xo, -+, X, are i.i.d., then

1 n
- X; > E[X]asn — o0
n

i=1

Law of large numbers: If E[|X|] < oo, then

n—o00 N, 4

1 n
Pr|lim — Y X; #E[X]| =0
=1

This is an (infinite n) result. We need (finite
n) concentration bounds.
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Concentration Using Moments
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Markov's Inequality
Basic method: Control tail probability Pr[X > ¢] by controlling the
of the random variable X. For example:
> Markov's inequality (requires only existence of the first moment)
>
» Chernoff bound (requires existence of the

)

Most elementary one:
Lemma: Markov's inequality

Given a non-negative random variable X with finite mean, we have

Pr[th]gy Vi >0

» Markov's inequality is tight, i.e., non-improvable in general.

» Smaller E[X] and/or larger ¢ implies a smaller probability
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Proof

Note that oo
Pr[X >t = / p(x)dr = E[lx >
t

Case I: X > t, then
X/t>12>1x>

Case Il: X < ¢, then

Combing the above, we have

EX]

PrlX > #] =Ellx>d < —
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More Extensions

k-th moments:

E[lX - E[X]|"]

PrllX —E[X]| > 1) < =

Vi >0

More generally:

» For any strictly increasing nonnegative function ¢, we have

Pr(¢(X) > ¢(t)] < ——7= VL>0

Choosing a specified ¢ can lead to much sharper bounds.
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Concentration for Sub-Gaussian
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Moment Generating Function

Definition: For a random variable X, the
is defined as
Mx(A) = Efexp(AX)]

Example:
» Normal distribution X ~ N(0,0?),

Mx (A) = exp ()\2202>

> Rademacher random variable: Pr[X =1] =1 and Pr[X = —1] =

Mx() < exp (2)

1
2

CUHK-Shenzhen @ SDS Xiao Li 8 /14



Chernoff Bounds
Prop: Chernoff bounds

For any random variable X and any ¢ > 0, we have

Pr[X —E[X] > {] < minE [eA(X*E[XD} e~ At

and
Pr[X —E[X] < —t] <minE {eA(E[XFX)} e~
A>0

Proof: We first note that
X —E[X] >t «= ) XTEXD > ot
Applying the Markov's inequality, we have

Pr[X — E[X] > t] = Pr[e’X—EEXD > M)
E[eA(X—E[X])]

- e)\t

Optimizing over A gives the desired result.
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Sub-Gaussian Random Variable

Definition: A random variable X with mean p = E[X] is called
sub-Gaussian, if there exists a positive number ¢ such that

2,2
BferX -] < ((*F7)
o > 0 is the sub-Gaussian parameter.
Example:

» Gaussian distribution X ~ A (u,0?) (equality holds).
> Rademacher random variable: Pr[X = 1] =1 and Pr[X = —1] =

[

)\2
E[e*X 9] < exp <2)

» Any bounded random variable on [a, ], we have o < }’_T“
~> See [1, Subsection 2.1.2].

[1] Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint. Cambridge

University Press.
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Recall Concentration Inequality for Sub-Gaussian

Theorem: Sub-Gaussian Concentration

Suppose X is a sub-Gaussian random variable with mean p and parameter
o, then for any t > 0, we have

+2
Pr[|X — p| > t] < 2e” 2.2

0.4 =
» This bound is much sharper.
» Exponential decay with respect 50.2 |
30).
to t.
» Equivalently, 0 N
| | | |

t2
Pr[| X —p| <t]>1—2e 22
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Proof
Recall the Chernoff bounds,

Pr[X —p>t] <minE {eA(X*“)] e M
A>0

By the definition of sub-Gaussian random variable, we have
2,2
E[e)\(X—,u)] S e(AT)

Combing the above two inequalities yields

20,27
PriX —p>t < mine(kz At).
A>0

Note that the quadratic function g(A) = ’\22‘72 — At attains its minimum at
A = ;. Optimizing the RHS over X provides

o2’

t2

PriX —p>t] < (=32,

By a symmetric argument, one can deduce the other side.
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Consequence: Hoeffding's Inequality
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Proof of Hoeffding's Inequality
Theorem: Hoeffding's Inequality
Suppose X; are independent sub-Gaussian random variables with mean p;

and sub-Gaussian parameter o; for i = 1,--- ,n, then for any ¢t > 0, we
have

Pr

n _ t2
> (X — ) = t] <e Xt

i=1

Proof:

n
Pr lZ(Xl — i) > t] < ]E\n>1]8E [BAZLl(Xﬁm)} e~ Chernoff bound
i=1 =

n n
. PR . — . 2 2 —
=minE He)‘(Xl #i) | e~ < min | I e o /2
A>0 el A20 5
1= i=

5 5 2
— min et Zic10:/2=A _ o 25 o2
A>0
» The Hoeffding's Inequality used in our lecture can be seen as a
corollary of this more general Hoeffding's Inequality.
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