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Law of Large Numbers

Typically, if we have X,X1, X2, · · · , Xn are i.i.d., then

1

n

n∑
i=1

Xi → E[X] as n→∞

Law of large numbers: If E[|X|] <∞, then

Pr

[
lim
n→∞

1

n

n∑
i=1

Xi 6= E[X]

]
= 0

This is an asymptotic (infinite n) result. We need non-asymptotic (finite
n) concentration bounds.
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Concentration Using Moments
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Markov’s Inequality

Basic method: Control tail probability Pr[X ≥ t] by controlling the
moments of the random variable X. For example:

I Markov’s inequality (requires only existence of the first moment)

I
...

I Chernoff bound (requires existence of the moment generating
function)

Most elementary one:

Lemma: Markov’s inequality

Given a non-negative random variable X with finite mean, we have

Pr[X ≥ t] ≤ E[X]

t
∀t > 0

I Markov’s inequality is tight, i.e., non-improvable in general.

I Smaller E[X] and/or larger t implies a smaller probability
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Proof

Note that

Pr[X ≥ t] =
∫ +∞

t

p(x)dx = E[1X≥t]

Case I: X ≥ t, then
X/t ≥ 1 ≥ 1X≥t

Case II: X < t, then
X/t ≥ 0 = 1X≥t

Combing the above, we have

Pr[X ≥ t] = E[1X≥t] ≤
E[X]

t
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More Extensions

k-th moments:

Pr[|X − E[X]| ≥ t] ≤ E[|X − E[X]|k]
tk

∀t > 0

More generally:

I For any strictly increasing nonnegative function φ, we have

Pr[φ(X) ≥ φ(t)] ≤ E[φ(X)]

φ(t)
∀t > 0

Choosing a specified φ can lead to much sharper bounds.

CUHK-Shenzhen • SDS Xiao Li 6 / 14



.

Concentration for Sub-Gaussian
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Moment Generating Function

Definition: For a random variable X, the moment generating function
(MGF) is defined as

MX(λ) = E[exp(λX)]

Example:

I Normal distribution X ∼ N (0, σ2),

MX(λ) = exp

(
λ2σ2

2

)
I Rademacher random variable: Pr[X = 1] = 1

2 and Pr[X = −1] = 1
2

MX(λ) ≤ exp

(
λ2

2

)
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Chernoff Bounds
Prop: Chernoff bounds

For any random variable X and any t > 0, we have

Pr[X − E[X] ≥ t] ≤ min
λ≥0

E
[
eλ(X−E[X])

]
e−λt

and
Pr[X − E[X] ≤ −t] ≤ min

λ≥0
E
[
eλ(E[X]−X)

]
e−λt

Proof: We first note that

X − E[X] ≥ t⇐⇒ eλ(X−E[X]) ≥ eλt

Applying the Markov’s inequality, we have

Pr[X − E[X] ≥ t] = Pr[eλ(X−E[X]) ≥ eλt]

≤ E[eλ(X−E[X])]

eλt

Optimizing over λ gives the desired result.
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Sub-Gaussian Random Variable
Definition: A random variable X with mean µ = E[X] is called
sub-Gaussian, if there exists a positive number σ such that

E[eλ(X−µ)] ≤ e
(
λ2σ2

2

)

σ > 0 is the sub-Gaussian parameter.

Example:

I Gaussian distribution X ∼ N (µ, σ2) (equality holds).

I Rademacher random variable: Pr[X = 1] = 1
2 and Pr[X = −1] = 1

2

E[eλ(X−0)] ≤ exp

(
λ2

2

)
I Any bounded random variable on [a, b], we have σ ≤ b−a

2 .

 See [1, Subsection 2.1.2].

[1] Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint. Cambridge

University Press.
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Recall Concentration Inequality for Sub-Gaussian

Theorem: Sub-Gaussian Concentration

Suppose X is a sub-Gaussian random variable with mean µ and parameter
σ, then for any t > 0, we have

Pr[|X − µ| ≥ t] ≤ 2e−
t2

2σ2

I This bound is much sharper.

I Exponential decay with respect
to t.

I Equivalently,

Pr[|X − µ| ≤ t] ≥ 1− 2e−
t2

2σ2
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Proof
Recall the Chernoff bounds,

Pr[X − µ ≥ t] ≤ min
λ≥0

E
[
eλ(X−µ)

]
e−λt

By the definition of sub-Gaussian random variable, we have

E[eλ(X−µ)] ≤ e
(
λ2σ2

2

)
.

Combing the above two inequalities yields

Pr[X − µ ≥ t] ≤ min
λ≥0

e

(
λ2σ2

2 −λt
)
.

Note that the quadratic function q(λ) = λ2σ2

2 − λt attains its minimum at
λ = t

σ2 . Optimizing the RHS over λ provides

Pr[X − µ ≥ t] ≤ e
(
− t2

2σ2

)
.

By a symmetric argument, one can deduce the other side.
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Consequence: Hoeffding’s Inequality

CUHK-Shenzhen • SDS Xiao Li 13 / 14



Proof of Hoeffding’s Inequality
Theorem: Hoeffding’s Inequality

Suppose Xi are independent sub-Gaussian random variables with mean µi
and sub-Gaussian parameter σi for i = 1, · · · , n, then for any t > 0, we
have

Pr

[
n∑
i=1

(Xi − µi) ≥ t

]
≤ e
− t2

2
∑n
i=1

σ2
i

Proof:

Pr

[
n∑
i=1

(Xi − µi) ≥ t

]
≤ min

λ≥0
E
[
eλ
∑n
i=1(Xi−µi)

]
e−λt Chernoff bound

= min
λ≥0

E

[
n∏
i=1

eλ(Xi−µi)

]
e−λt ≤ min

λ≥0

n∏
i=1

eλ
2σ2
i /2−λt

= min
λ≥0

eλ
2∑n

i=1 σ
2
i /2−λt = e

− t2

2
∑n
i=1

σ2
i

I The Hoeffding’s Inequality used in our lecture can be seen as a
corollary of this more general Hoeffding’s Inequality.
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