The Chinese University of Hong Kong, Shenzhen
School of Data Science s <o

DDAS5001 Supplementary Note on The Convergence Analysis of Gradient Descent
In this note, We prove the O(1/k) convergence rate of the gradient descent method.

1 The O(1/k) convergence result

Suppose our task is

361%@% L£(0) (1)

We apply gradient descent (GD) to problem ([I)), which has the form
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where ug > 0 is the stepsize. When the function £ is convex and L-smooth (i.e., its gradient
is L-Lipschitz continuous with parameter L), we have the following theorem for the convergence
result.

Theorem 1. Suppose we choose constant stepsize p = p = 1/L in and the function L is
convex and L-smooth, then we have

L6y — 6"I3

L(0y) — L(6%) < 5%

where 6 is any global minimizer to .
Theorem [If tells us the following:
e The convergence rate of GD on convex smooth problem is O(1/k).

e If we want to obtain £(0)) — L(0*) < e, we need at most O(1/e) iterations.

2 Descent lemma

Before going to the proof of Theorem [1} we derive the so-called descent lemma from the L-Lipschitz
gradient.

Definition 1 (L-smoothness). h is said to be L-smooth if its gradient is L-Lipschitz, i.e.,
IVh(w) = Vh(w)lls < Lijw — ulz, Vo, u (3)
The following is a very famous and useful lemma in the analysis of gradient-based algorithms.

Lemma 1. Suppose the function h is L-smooth, then we have
L 2
h(w) < h(u) + (Vh(u),w — u) + §||'w — ul|
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Proof. To establish this descend lemma, we define ¢(¢t) = h(u+t(w—u)), clearly g(0) = h(u), g(1) =
h(w), we have

1
hw) = hw) = o(1) =9(0) = | /(O
_ /1 <Vh(u N t('w _ u)) _ Vh(’l.L) + Vh(u),'w — u> dt
0
1
< /0 IVh(u+ t(w — w)) = Vh(w)| - |w - u| dt + (Vh(w),w — u)
1
< /O tLlw — wl? dt + (Vh(u),w — u)
_ g”w ~ | + (Vh(u), w — u)

where in the last inequality we have used the L-Lipschitz gradient property . O

3 Proof of Theorem {1

The reason that we call Lemma [I] descent lemma is by letting h = £ and plugging w = 6y, and
u = 0. This leads to

L
L(Ok11) < L(Ok) +(VL(OK), 011 — O) + §H9k+1 — 0 (4)

According to the GD ({2)), we can invoke 01 — 0 = —uVL(0y) into the above inequality, this
yields

Ly
L(Ori1) < L(O) = (1= =) VLOR)I3 ()
If we choose p < %, we must have
L(Bk11) < L(8x) — VL3 (6)

for some constant ¢ > 0, which is also called sufficient decrease property, this clarifies the name
descent lemma.

Taking p < % gives 1 — % > % and

I
L(Og+1) < L(6r) — §||VE(9k)|!§ (7)

Recall that £ is convex, we have
L(6") = L(0r) + (VL(Ok), 0" — b)) (8)

which is from first-order convexity characterization.

Combing and provides



L(Bri1) < £(60:) = FVLODB
< L(67) + (VL(O:), 0, — 67) = £ IVL©)]3

_ * 1 * * 2 (9)
= £(67) + 5 (105~ 6°13 — 61— 6" — VL (1))
_ * 1 _ p*l12 _ _ p*|12
= (0 + 5 (166~ 6°13 ~ 1011 — 6°]3)
Now, summing over iterations, also called telescoping, yields
, 1
> (£(81) = £6%) < 5~ (1100 — 07113 — 10, — 67]3)
i=1 H (10)
1
< _p*|2
< 5 60— 6°I
From ([7)), we can see £(0y) is decreasing, hence we finally have
_1 b 1
= < —1|@g — 6% |3 11
£(00) — £0%) < 1 D (£00) — £0%) < 5100 -0 (1)

Plugging p = % to the above inequality provides the desired result.
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