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In this note, We prove the O(1/k) convergence rate of the gradient descent method.

1 The O(1/k) convergence result

Suppose our task is
min
θ∈Rd

L(θ) (1)

We apply gradient descent (GD) to problem (1), which has the form

θk+1 = θk − µk∇L(θk) (2)

where µk > 0 is the stepsize. When the function L is convex and L-smooth (i.e., its gradient
is L-Lipschitz continuous with parameter L), we have the following theorem for the convergence
result.

Theorem 1. Suppose we choose constant stepsize µk = µ = 1/L in (2) and the function L is
convex and L-smooth, then we have

L(θk)− L(θ?) ≤ L‖θ0 − θ?‖22
2k

where θ? is any global minimizer to (1).

Theorem 1 tells us the following:

• The convergence rate of GD on convex smooth problem is O(1/k).

• If we want to obtain L(θk)− L(θ?) ≤ ε, we need at most O(1/ε) iterations.

2 Descent lemma

Before going to the proof of Theorem 1, we derive the so-called descent lemma from the L-Lipschitz
gradient.

Definition 1 (L-smoothness). h is said to be L-smooth if its gradient is L-Lipschitz, i.e.,

‖∇h(w)−∇h(u)‖2 ≤ L‖w − u‖2, ∀w,u (3)

The following is a very famous and useful lemma in the analysis of gradient-based algorithms.

Lemma 1. Suppose the function h is L-smooth, then we have

h(w) ≤ h(u) + 〈∇h(u),w − u〉+
L

2
‖w − u‖2
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Proof. To establish this descend lemma, we define g(t) = h(u+t(w−u)), clearly g(0) = h(u), g(1) =
h(w), we have

h(w)− h(u) = g(1)− g(0) =

∫ 1

0
g′(t)dt

=

∫ 1

0
〈∇h(u+ t(w − u))−∇h(u) +∇h(u),w − u〉 dt

≤
∫ 1

0
‖∇h(u+ t(w − u))−∇h(u)‖ · ‖w − u‖ dt+ 〈∇h(u),w − u〉

≤
∫ 1

0
tL‖w − u‖2 dt+ 〈∇h(u),w − u〉

=
L

2
‖w − u‖+ 〈∇h(u),w − u〉

where in the last inequality we have used the L-Lipschitz gradient property (3).

3 Proof of Theorem 1

The reason that we call Lemma 1 descent lemma is by letting h = L and plugging w = θk+1 and
u = θk. This leads to

L(θk+1) ≤ L(θk) + 〈∇L(θk),θk+1 − θk〉+
L

2
‖θk+1 − θk‖2 (4)

According to the GD (2), we can invoke θk+1 − θk = −µ∇L(θk) into the above inequality, this
yields

L(θk+1) ≤ L(θk)− (1− Lµ

2
)µ‖∇L(θk)‖22 (5)

If we choose µ < 2
L , we must have

L(θk+1) ≤ L(θk)− c‖∇L(θk)‖22 (6)

for some constant c > 0, which is also called sufficient decrease property, this clarifies the name
descent lemma.
Taking µ ≤ 1

L gives 1− Lµ
2 ≥

1
2 and

L(θk+1) ≤ L(θk)−
µ

2
‖∇L(θk)‖22 (7)

Recall that L is convex, we have

L(θ?) ≥ L(θk) + 〈∇L(θk),θ
? − θk〉 (8)

which is from first-order convexity characterization.
Combing (7) and (8) provides
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L(θk+1) ≤ L(θk)−
µ

2
‖∇L(θk)‖22

≤ L(θ?) + 〈∇L(θk),θk − θ?〉 −
µ

2
‖∇L(θk)‖22

= L(θ?) +
1

2µ

(
‖θk − θ?‖22 − ‖θk − θ? − µ∇L(θk)‖22

)
= L(θ?) +

1

2µ

(
‖θk − θ?‖22 − ‖θk+1 − θ?‖22

)
(9)

Now, summing over iterations, also called telescoping, yields

k∑
i=1

(L(θk)− L(θ?)) ≤ 1

2µ

(
‖θ0 − θ?‖22 − ‖θk − θ?‖22

)
≤ 1

2µ
‖θ0 − θ?‖22

(10)

From (7), we can see L(θk) is decreasing, hence we finally have

L(θk)− L(θ?) ≤ 1

k

k∑
i=1

(L(θk)− L(θ?)) ≤ 1

2µk
‖θ0 − θ?‖22 (11)

Plugging µ = 1
L to the above inequality provides the desired result.
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